OVERVIEW

The SM5010 series are crystal oscillator module ICs. They incorporate oscillator and output buffer circuits, employing built-in oscillator capacitors and feedback resistors with excellent frequency response, eliminating the need for external components to form a stable crystal oscillator. There are 7 oscillator configurations available for design and application optimization.

FEATURES

- 7 types of oscillation circuit structure
 - **For fundamental oscillator**
 - 5010A××: Simple structure with low frequency variation
 - 5010B××: Low crystal current type with R_D built-in oscillation circuit
 - 5010CL××: Oscillation stop function built-in
 - 5010DN××: External capacitors, C_G and C_D required
 - 5010EA××: Low current consumption type
 - **For 3rd overtone oscillator**
 - 5010F××: Suitable for round blank
 - 5010H××: External resistor, R_f required
- 2.7 to 5.5V operating supply voltage
- Capacitors C_G, C_D built-in
- Inverter amplifier feedback resistor built-in
- Output duty level
 - TTL level: AK×, BK×, HK×
 - CMOS level: AN×, AH×, BN×, BH×, CL×, DN×, EA×, FN×, FH×, HN×
- Oscillator frequency output (f_O, f_O/2, f_O/4, f_O/8, f_O/16 determined by internal connection)
- Standby function
- Pull-up resistor built-in
- 8-pin SOP (SM5010×××S)
- Chip form (CF5010×××)

SERIES CONFIGURATION

<table>
<thead>
<tr>
<th>Version</th>
<th>Operating supply voltage range [V]</th>
<th>Built-in capacitance</th>
<th>R_D [Ω]</th>
<th>Output current (VDD = 5V) [mA]</th>
<th>Output duty level</th>
<th>Output frequency</th>
<th>INHN input level</th>
<th>Standby mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF5010AN1</td>
<td>2.7 to 5.5</td>
<td>29 29</td>
<td>16</td>
<td>CMOS</td>
<td>f_O</td>
<td>TTL</td>
<td>No</td>
<td>High impedance</td>
</tr>
<tr>
<td>CF5010AN2</td>
<td>4.5 to 5.5</td>
<td>29 29</td>
<td>16</td>
<td>TTL</td>
<td>f_O</td>
<td>TTL</td>
<td>No</td>
<td>High impedance</td>
</tr>
<tr>
<td>CF5010AH1</td>
<td>2.7 to 5.5</td>
<td>29 29</td>
<td>4</td>
<td>CMOS</td>
<td>f_O</td>
<td>TTL</td>
<td>No</td>
<td>High impedance</td>
</tr>
<tr>
<td>CF5010BN1</td>
<td>2.7 to 5.5</td>
<td>22 22</td>
<td>820</td>
<td>CMOS</td>
<td>f_O</td>
<td>TTL</td>
<td>No</td>
<td>High impedance</td>
</tr>
<tr>
<td>CF5010BK1</td>
<td>4.5 to 5.5</td>
<td>22 22</td>
<td>820</td>
<td>TTL</td>
<td>f_O</td>
<td>TTL</td>
<td>No</td>
<td>High impedance</td>
</tr>
<tr>
<td>CF5010CH1</td>
<td>2.7 to 5.5</td>
<td>22 22</td>
<td>820</td>
<td>CMOS</td>
<td>f_O</td>
<td>TTL</td>
<td>No</td>
<td>High impedance</td>
</tr>
<tr>
<td>CF5010CL1</td>
<td>2.7 to 5.5</td>
<td>18 18</td>
<td>16</td>
<td>CMOS</td>
<td>f_O</td>
<td>TTL</td>
<td>No</td>
<td>High impedance</td>
</tr>
<tr>
<td>CF5010DN1</td>
<td>2.7 to 5.5</td>
<td>– –</td>
<td>820</td>
<td>CMOS</td>
<td>f_O</td>
<td>TTL</td>
<td>No</td>
<td>High impedance</td>
</tr>
<tr>
<td>CF5010EA1</td>
<td>2.7 to 5.5</td>
<td>10 15</td>
<td>820</td>
<td>CMOS</td>
<td>f_O</td>
<td>TTL</td>
<td>Yes</td>
<td>LOW</td>
</tr>
</tbody>
</table>

1. Package devices have designation SM5010×××S.
SERIES CONFIGURATION

For 3rd Overtone Oscillator

<table>
<thead>
<tr>
<th>Version</th>
<th>Operating supply voltage range [V]</th>
<th>gm ratio</th>
<th>Built-in capacitance</th>
<th>R_f [kΩ]</th>
<th>Output current (V$_{DD}$ = 5V) [mA]</th>
<th>Output duty level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF5010FNA</td>
<td>2.7 to 5.5</td>
<td>1.00</td>
<td>C$_G$ [pF] C$_D$ [pF]</td>
<td>13</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>CF5010FNC</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>CF5010FND</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>CF5010FNE</td>
<td>4.5 to 5.5</td>
<td></td>
<td></td>
<td>8</td>
<td>15</td>
<td>2.2</td>
</tr>
<tr>
<td>CF5010FHA</td>
<td>4.5 to 5.5</td>
<td>1.00</td>
<td></td>
<td>13</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>CF5010FHC</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>CF5010FHD</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>CF5010FHE</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>CF5010HN1</td>
<td>4.5 to 5.5</td>
<td>1.17</td>
<td></td>
<td>13</td>
<td>17</td>
<td>200</td>
</tr>
<tr>
<td>CF5010HK1</td>
<td>4.5 to 5.5</td>
<td>1.17</td>
<td></td>
<td>13</td>
<td>17</td>
<td>200</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM5010xxxS</td>
<td>8-pin SOP</td>
</tr>
<tr>
<td>CF5010xxx-1</td>
<td>Chip form</td>
</tr>
</tbody>
</table>

PACKAGE DIMENSIONS

(Unit: mm)

- 8-pin SOP

![Diagram of package dimensions](image)
PAD LAYOUT
(Unit: µm)

PINOUT
(Top view)

PIN DESCRIPTION and PAD DIMENSIONS

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
<th>Pad dimensions [µm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INHN</td>
<td>I</td>
<td>Output state control input. Standby mode when LOW, pull-up resistor built in. In the case of the 5010CL, the oscillator stops and Power-saving pull-up resistor is built-in to reduce current consumption at standby mode.</td>
<td>195 174.4</td>
</tr>
<tr>
<td>2</td>
<td>XT</td>
<td>I</td>
<td>Amplifier input. Crystal oscillator connection pins.</td>
<td>385 174.4</td>
</tr>
<tr>
<td>3</td>
<td>XTN</td>
<td>O</td>
<td>Amplifier output. Crystal oscillator connected between XT and XTN</td>
<td>575 174.4</td>
</tr>
<tr>
<td>4</td>
<td>VSS</td>
<td>–</td>
<td>Ground</td>
<td>765 174.4</td>
</tr>
<tr>
<td>5</td>
<td>Q</td>
<td>O</td>
<td>Output. Output frequency (f₀, f₀/2, f₀/4, f₀/8, f₀/16) determined by internal connection</td>
<td>757.6 1017.6</td>
</tr>
<tr>
<td>6</td>
<td>NC</td>
<td>–</td>
<td>No connection</td>
<td>– –</td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
<td>–</td>
<td>No connection</td>
<td>– –</td>
</tr>
<tr>
<td>8</td>
<td>VDD</td>
<td>–</td>
<td>Supply voltage</td>
<td>165.4 1014.6</td>
</tr>
</tbody>
</table>
BLOCK DIAGRAM

For Fundamental Oscillator

- SM5010 series
- 5010A××, B××, CL×, DN×, EA× series

For 3rd Overtone Oscillator

- SM5010 series
- 5010F××, H×× series
FUNCTIONAL DESCRIPTION

Standby Function

5010AH×, AK×, AN×, BH×, BK×, BN×, DN×, FN×, FH×, HN×, HK× series
When INHN goes LOW, the output on Q becomes high impedance, but internally the oscillator does not stop.

5010CL× series
When INHN goes LOW, the oscillator stops and the oscillator output on Q becomes high impedance.

5010EA× series
When INHN goes LOW, the oscillator stops and the oscillator output on Q becomes LOW.

<table>
<thead>
<tr>
<th>Version</th>
<th>INHN</th>
<th>Q</th>
<th>Oscillator</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH×, AK×, AN×, BH×, BK×, BN×, DN×, FN×, FH×, HN×, HK× series</td>
<td>HIGH (or open)</td>
<td>Any 1f0, 1f0/2, 1f0/4, 1f0/8 or 1f0/16 output frequency</td>
<td>Normal operation</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>High impedance</td>
<td>Normal operation</td>
</tr>
<tr>
<td>CL× series</td>
<td>HIGH (or open)</td>
<td>Any 1f0, 1f0/2, 1f0/4, 1f0/8 or 1f0/16 output frequency</td>
<td>Normal operation</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>High impedance</td>
<td>Stopped</td>
</tr>
<tr>
<td>EA× series</td>
<td>HIGH (or open)</td>
<td>Either 1f0 or 1f0/2 output frequency</td>
<td>Normal operation</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>LOW</td>
<td>Stopped</td>
</tr>
</tbody>
</table>

Power-saving Pull-up Resistor (CL series only)

The INHN pull-up resistance changes in response to the input level (HIGH or LOW). When INHN goes LOW (standby state), the pull-up resistance becomes large to reduce the current consumption during standby.
SM5010 series

SPECIFICATIONS

Absolute Maximum Ratings

$V_{SS} = 0\text{V}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage range</td>
<td>V_{DD}</td>
<td>-0.5 to $+7.0\text{V}$</td>
<td>-0.5 to V_{DD} + 0.5</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage range</td>
<td>V_{IN}</td>
<td>-0.5 to V_{DD} + 0.5</td>
<td>-0.5 to V_{DD} + 0.5</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage range</td>
<td>V_{OUT}</td>
<td>-0.5 to V_{DD} + 0.5</td>
<td>-0.5 to V_{DD} + 0.5</td>
<td>V</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>T_{opr}</td>
<td>Chip form</td>
<td>-40 to $+85$</td>
<td>$^\circ\text{C}$</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>T_{stg}</td>
<td>8-pin SOP</td>
<td>-65 to $+150$</td>
<td>$^\circ\text{C}$</td>
</tr>
<tr>
<td>Output current</td>
<td>I_{OUT}</td>
<td>AH, BH, FH, EA, AN, AK, BN, BK, CL, DN, FN, HN, HK</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{D}</td>
<td>8-pin SOP</td>
<td>500</td>
<td>mW</td>
</tr>
</tbody>
</table>

Recommended Operating Conditions

3V operation

$V_{SS} = 0\text{V}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Version</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating supply voltage</td>
<td>V_{DD}</td>
<td>All version</td>
<td>2.7 to 3.6V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input voltage</td>
<td>V_{IN}</td>
<td>All version</td>
<td>V_{SS} to V_{DD}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>T_{OPR}</td>
<td>$5010AN$<</td>
<td>-10 to $+70$</td>
<td>$^\circ\text{C}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$5010AH$<</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$5010BN$<</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$5010BH$<</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$5010CL$<</td>
<td>-20 to $+80$</td>
<td>$^\circ\text{C}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$5010DN1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$5010EA$<</td>
<td>-10 to $+70$</td>
<td>$^\circ\text{C}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$5010FN$<</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating frequency</td>
<td>f</td>
<td>$5010AN$<</td>
<td>2 to 30</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$5010AH$<</td>
<td>2 to 16</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$5010BN$<</td>
<td>2 to 30</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$5010BH$<</td>
<td>2 to 16</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$5010CL$<</td>
<td>2 to 16</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$5010DN1$</td>
<td>2 to 30</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$5010EA$<</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$5010FN$<</td>
<td>22 to 40</td>
<td>MHz</td>
<td></td>
</tr>
</tbody>
</table>
5V operation

V_{SS} = 0V

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Version</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating supply voltage</td>
<td>V<sub>DD</sub></td>
<td>All version</td>
<td></td>
<td>4.5 to 5.5</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage</td>
<td>V<sub>IN</sub></td>
<td>All version</td>
<td>V<sub>SS</sub> to V<sub>DD</sub></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>T<sub>OPR</sub></td>
<td></td>
<td></td>
<td>5010AN<
5010AK<
5010AH<
5010BN<
5010BK<
5010BH<
5010CL<
5010DN1
5010EA
5010FN<
5010FH<
5010HN1
5010HK1</td>
<td>−40 to +85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5010EA<</td>
<td>C<sub>L</sub> ≤ 15pF, f = 2 to 30MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C<sub>L</sub> ≤ 15pF, f = 2 to 40MHz</td>
<td>−10 to +70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5010FN<</td>
<td>C<sub>L</sub> ≤ 50pF, 30MHz ≤ f ≤ 50MHz</td>
<td>−20 to +80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C<sub>L</sub> ≤ 15pF, 50MHz ≤ f ≤ 70MHz</td>
<td>−15 to +75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5010FH<</td>
<td>C<sub>L</sub> ≤ 15pF, 50MHz ≤ f ≤ 60MHz</td>
<td>−20 to +80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C<sub>L</sub> ≤ 15pF, 50MHz ≤ f ≤ 70MHz</td>
<td>−15 to +75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5010HN1</td>
<td></td>
<td>−40 to +85</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5010HK1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating frequency</td>
<td>f</td>
<td>5010AN<</td>
<td>C<sub>L</sub> ≤ 50pF</td>
<td>2 to 30</td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5010AK<</td>
<td>C<sub>L</sub> ≤ 15pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5010AH<</td>
<td>C<sub>L</sub> ≤ 50pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5010BN<</td>
<td>C<sub>L</sub> ≤ 50pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5010BK<</td>
<td>C<sub>L</sub> ≤ 15pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5010BH<</td>
<td>C<sub>L</sub> ≤ 15pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5010CL<</td>
<td>C<sub>L</sub> ≤ 50pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5010DN1</td>
<td>C<sub>L</sub> ≤ 50pF, T<sub>a</sub> = −40 to +85°C</td>
<td>2 to 40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C<sub>L</sub> ≤ 50pF, T<sub>a</sub> = −20 to +80°C</td>
<td>30 to 50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C<sub>L</sub> ≤ 15pF, T<sub>a</sub> = −15 to +75°C</td>
<td>50 to 70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5010FN<</td>
<td>C<sub>L</sub> ≤ 50pF, T<sub>a</sub> = −20 to +80°C</td>
<td>30 to 50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C<sub>L</sub> ≤ 15pF, T<sub>a</sub> = −15 to +75°C</td>
<td>50 to 60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5010HN1</td>
<td>C<sub>L</sub> ≤ 50pF</td>
<td>22 to 50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5010HK1</td>
<td>C<sub>L</sub> ≤ 15pF</td>
<td>22 to 50</td>
<td></td>
</tr>
</tbody>
</table>
Electrical Characteristics

5010AN✓, BN✓, DN✓ series

3V operation: \(V_{DD} = 2.7\) to 3.6V, \(V_{SS} = 0\)V, \(Ta = -10\) to +70°C unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH-level output voltage</td>
<td>(V_{OH})</td>
<td>Q: Measurement cct 1, (V_{DD} = 2.7V, I_{OH} = 8mA)</td>
<td>min</td>
<td>typ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.1</td>
<td>2.4</td>
</tr>
<tr>
<td>LOW-level output voltage</td>
<td>(V_{OL})</td>
<td>Q: Measurement cct 2, (V_{DD} = 2.7V, I_{OL} = 8mA)</td>
<td>–</td>
<td>0.3</td>
</tr>
<tr>
<td>HIGH-level input voltage</td>
<td>(V_{IH})</td>
<td>INHN</td>
<td>2.0</td>
<td>–</td>
</tr>
<tr>
<td>LOW-level input voltage</td>
<td>(V_{IL})</td>
<td>INHN</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Output leakage current</td>
<td>(I_{Z})</td>
<td>Q: Measurement cct 2, INHN = LOW, (V_{DD} = 3.6V)</td>
<td>(V_{OH} = V_{DD})</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(V_{OL} = V_{SS})</td>
<td>–</td>
</tr>
<tr>
<td>Current consumption</td>
<td>(I_{DD})</td>
<td>Measurement cct 3, load cct 1, INHN = open, (C_{L} = 15pF, f = 30MHz)</td>
<td>5010×N1</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010×N2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010×N3</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010×N4</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010×N5</td>
<td>–</td>
</tr>
<tr>
<td>INHN pull-up resistance</td>
<td>(R_{UP2})</td>
<td>Measurement cct 4</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>Feedback resistance</td>
<td>(R_{f})</td>
<td>Measurement cct 5</td>
<td>80</td>
<td>200</td>
</tr>
<tr>
<td>Oscillator amplifier output resistance</td>
<td>(R_{D})</td>
<td>Design value</td>
<td>5010××</td>
<td>690</td>
</tr>
<tr>
<td>Built-in capacitance</td>
<td>(C_{G})</td>
<td>Design value. A monitor pattern on a wafer is tested.</td>
<td>5010××</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>(C_{D})</td>
<td></td>
<td>5010××</td>
<td>20</td>
</tr>
</tbody>
</table>

5010AN✓, AK✓, BN✓, BK✓, DN✓ series

5V operation: \(V_{DD} = 4.5\) to 5.5V, \(V_{SS} = 0\)V, \(Ta = -40\) to +85°C unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH-level output voltage</td>
<td>(V_{OH})</td>
<td>Q: Measurement cct 1, (V_{DD} = 4.5V, I_{OH} = 16mA)</td>
<td>3.9</td>
<td>4.2</td>
</tr>
<tr>
<td>LOW-level output voltage</td>
<td>(V_{OL})</td>
<td>Q: Measurement cct 2, (V_{DD} = 4.5V, I_{OL} = 16mA)</td>
<td>–</td>
<td>0.3</td>
</tr>
<tr>
<td>HIGH-level input voltage</td>
<td>(V_{IH})</td>
<td>INHN</td>
<td>2.0</td>
<td>–</td>
</tr>
<tr>
<td>LOW-level input voltage</td>
<td>(V_{IL})</td>
<td>INHN</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Output leakage current</td>
<td>(I_{Z})</td>
<td>Q: Measurement cct 2, INHN = LOW, (V_{DD} = 5.5V)</td>
<td>(V_{OH} = V_{DD})</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(V_{OL} = V_{SS})</td>
<td>–</td>
</tr>
<tr>
<td>Current consumption</td>
<td>(I_{DD})</td>
<td>Measurement cct 3, load cct 1, INHN = open, (C_{L} = 50pF, f = 30MHz)</td>
<td>5010×N1</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010×N2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010×N3</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010×N4</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010×N5</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010×K1</td>
<td>–</td>
</tr>
<tr>
<td>INHN pull-up resistance</td>
<td>(R_{UP2})</td>
<td>Measurement cct 4</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>Feedback resistance</td>
<td>(R_{f})</td>
<td>Measurement cct 5</td>
<td>80</td>
<td>200</td>
</tr>
<tr>
<td>Oscillator amplifier output resistance</td>
<td>(R_{D})</td>
<td>Design value</td>
<td>5010××</td>
<td>690</td>
</tr>
<tr>
<td>Built-in capacitance</td>
<td>(C_{G})</td>
<td>Design value. A monitor pattern on a wafer is tested.</td>
<td>5010××</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>(C_{D})</td>
<td></td>
<td>5010××</td>
<td>20</td>
</tr>
</tbody>
</table>
5010AH×, BH× series

3V operation: $V_{DD} = 2.7$ to 3.6V, $V_{SS} = 0V$, $Ta = -10$ to $+70^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH-level output voltage</td>
<td>V_{OH}</td>
<td>Q: Measurement cct 1, $V_{DD} = 2.7V, I_{OH} = 2mA$</td>
<td>min typ max</td>
<td>V</td>
</tr>
<tr>
<td>LOW-level output voltage</td>
<td>V_{OL}</td>
<td>Q: Measurement cct 2, $V_{DD} = 2.7V, I_{OL} = 2mA$</td>
<td>2.0 – –</td>
<td>V</td>
</tr>
<tr>
<td>HIGH-level input voltage</td>
<td>V_{IH}</td>
<td>INHN</td>
<td>2.0 – –</td>
<td>V</td>
</tr>
<tr>
<td>LOW-level input voltage</td>
<td>V_{IL}</td>
<td>INHN</td>
<td>– – 0.5</td>
<td>V</td>
</tr>
<tr>
<td>Output leakage current</td>
<td>I_{Z}</td>
<td>Q: Measurement cct 2, INHN = LOW, $V_{DD} = 3.6V$</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>Current consumption</td>
<td>I_{DD}</td>
<td>Measurement cct 3, load cct 1, INHN = open, $C_{L} = 15pF, f = 16MHz$</td>
<td>5010×H1 – 3 6</td>
<td>mA</td>
</tr>
<tr>
<td>INHN pull-up resistance</td>
<td>R_{UP2}</td>
<td>Measurement cct 4</td>
<td>40 100 250</td>
<td>kΩ</td>
</tr>
<tr>
<td>Feedback resistance</td>
<td>R_{f}</td>
<td>Measurement cct 5</td>
<td>80 200 500</td>
<td>kΩ</td>
</tr>
<tr>
<td>Oscillator amplifier output resistance</td>
<td>R_{D}</td>
<td>Design value</td>
<td>5010B×× 690 820 940</td>
<td>Ω</td>
</tr>
<tr>
<td>Built-in capacitance</td>
<td>C_{G}</td>
<td>Design value. A monitor pattern on a wafer is tested.</td>
<td>$5010A××$ 26 29 32</td>
<td>pF</td>
</tr>
<tr>
<td>CD</td>
<td>$5010B××$ 20 22 24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5V operation: $V_{DD} = 4.5$ to 5.5V, $V_{SS} = 0V$, $Ta = -40$ to $+85^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH-level output voltage</td>
<td>V_{OH}</td>
<td>Q: Measurement cct 1, $V_{DD} = 4.5V, I_{OH} = 4mA$</td>
<td>min typ max</td>
<td>V</td>
</tr>
<tr>
<td>LOW-level output voltage</td>
<td>V_{OL}</td>
<td>Q: Measurement cct 2, $V_{DD} = 4.5V, I_{OL} = 4mA$</td>
<td>– 0.3 0.5</td>
<td>V</td>
</tr>
<tr>
<td>HIGH-level input voltage</td>
<td>V_{IH}</td>
<td>INHN</td>
<td>2.0 – –</td>
<td>V</td>
</tr>
<tr>
<td>LOW-level input voltage</td>
<td>V_{IL}</td>
<td>INHN</td>
<td>– – 0.8</td>
<td>V</td>
</tr>
<tr>
<td>Output leakage current</td>
<td>I_{Z}</td>
<td>Q: Measurement cct 2, INHN = LOW, $V_{DD} = 5.5V$</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>Current consumption</td>
<td>I_{DD}</td>
<td>Measurement cct 3, load cct 1, INHN = open, $C_{L} = 15pF, f = 30MHz$</td>
<td>5010×H1 – 9 18</td>
<td>mA</td>
</tr>
<tr>
<td>INHN pull-up resistance</td>
<td>R_{UP2}</td>
<td>Measurement cct 4</td>
<td>40 100 250</td>
<td>kΩ</td>
</tr>
<tr>
<td>Feedback resistance</td>
<td>R_{f}</td>
<td>Measurement cct 5</td>
<td>80 200 500</td>
<td>kΩ</td>
</tr>
<tr>
<td>Oscillator amplifier output resistance</td>
<td>R_{D}</td>
<td>Design value</td>
<td>5010B×× 690 820 940</td>
<td>Ω</td>
</tr>
<tr>
<td>Built-in capacitance</td>
<td>C_{G}</td>
<td>Design value. A monitor pattern on a wafer is tested.</td>
<td>$5010A××$ 26 29 32</td>
<td>pF</td>
</tr>
<tr>
<td>CD</td>
<td>$5010B××$ 20 22 24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5010CL× series

3V operation: $V_{DD} = 2.7$ to 3.6V, $V_{SS} = 0V$, $Ta = -20$ to +80°C unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH-level output voltage</td>
<td>V_{OH}</td>
<td>Q: Measurement cct 1, $V_{DD} = 2.7V$, $I_{OH} = 8mA$</td>
<td>2.2</td>
<td>2.4</td>
</tr>
<tr>
<td>LOW-level output voltage</td>
<td>V_{OL}</td>
<td>Q: Measurement cct 2, $V_{DD} = 2.7V$, $I_{OL} = 8mA$</td>
<td>–</td>
<td>0.3</td>
</tr>
<tr>
<td>HIGH-level input voltage</td>
<td>V_{IH}</td>
<td>INHN</td>
<td>$0.7V_{DD}$</td>
<td>–</td>
</tr>
<tr>
<td>LOW-level input voltage</td>
<td>V_{IL}</td>
<td>INHN</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Output leakage current</td>
<td>I_{Z}</td>
<td>Q: Measurement cct 2, INHN = LOW, $V_{DD} = 3.6V$</td>
<td>$V_{OH} = V_{DD}$</td>
<td>–</td>
</tr>
<tr>
<td>Current consumption</td>
<td>I_{DD}</td>
<td>Measurement cct 3, load cct 1, INHN = open, $C_{c} = 15pF, f = 30MHz$</td>
<td>5010CL1</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010CL2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010CL3</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010CL4</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010CL5</td>
<td>–</td>
</tr>
<tr>
<td>Standby current</td>
<td>I_{ST}</td>
<td>Measurement cct 6, INHN = LOW</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>INHN pull-up resistance</td>
<td>R_{UP1}</td>
<td>Measurement cct 4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>R_{UP2}</td>
<td></td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>Feedback resistance</td>
<td>R_{f}</td>
<td>Measurement cct 5</td>
<td>80</td>
<td>200</td>
</tr>
<tr>
<td>Built-in capacitance</td>
<td>C_{G}</td>
<td>Design value. A monitor pattern on a wafer is tested.</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>C_{D}</td>
<td></td>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>

5V operation: $V_{DD} = 4.5$ to 5.5V, $V_{SS} = 0V$, $Ta = -40$ to +85°C unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH-level output voltage</td>
<td>V_{OH}</td>
<td>Q: Measurement cct 1, $V_{DD} = 4.5V$, $I_{OH} = 16mA$</td>
<td>4.0</td>
<td>4.2</td>
</tr>
<tr>
<td>LOW-level output voltage</td>
<td>V_{OL}</td>
<td>Q: Measurement cct 2, $V_{DD} = 4.5V$, $I_{OL} = 16mA$</td>
<td>–</td>
<td>0.3</td>
</tr>
<tr>
<td>HIGH-level input voltage</td>
<td>V_{IH}</td>
<td>INHN</td>
<td>$0.7V_{DD}$</td>
<td>–</td>
</tr>
<tr>
<td>LOW-level input voltage</td>
<td>V_{IL}</td>
<td>INHN</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Output leakage current</td>
<td>I_{Z}</td>
<td>Q: Measurement cct 2, INHN = LOW, $V_{DD} = 5.5V$</td>
<td>$V_{OH} = V_{DD}$</td>
<td>–</td>
</tr>
<tr>
<td>Current consumption</td>
<td>I_{DD}</td>
<td>Measurement cct 3, load cct 1, INHN = open, $C_{c} = 50pF, f = 30MHz$</td>
<td>5010CL1</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010CL2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010CL3</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010CL4</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010CL5</td>
<td>–</td>
</tr>
<tr>
<td>Standby current</td>
<td>I_{ST}</td>
<td>Measurement cct 6, INHN = LOW</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>INHN pull-up resistance</td>
<td>R_{UP1}</td>
<td>Measurement cct 4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>R_{UP2}</td>
<td></td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>Feedback resistance</td>
<td>R_{f}</td>
<td>Measurement cct 5</td>
<td>80</td>
<td>200</td>
</tr>
<tr>
<td>Built-in capacitance</td>
<td>C_{G}</td>
<td>Design value. A monitor pattern on a wafer is tested.</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>C_{D}</td>
<td></td>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>
5010EA× series

3V operation: \(V_{DD} = 2.7 \) to 3.6V, \(V_{SS} = 0V \), \(Ta = -10 \) to +70°C unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH-level output voltage</td>
<td>(V_{OH})</td>
<td>Q: Measurement cct 1, (V_{DD} = 2.7V), (I_{OH} = 2mA)</td>
<td>(V)</td>
<td>2.1</td>
</tr>
<tr>
<td>LOW-level output voltage</td>
<td>(V_{OL})</td>
<td>Q: Measurement cct 2, (V_{DD} = 2.7V), (I_{OL} = 2mA)</td>
<td>(V)</td>
<td>–</td>
</tr>
<tr>
<td>HIGH-level input voltage</td>
<td>(V_{IH})</td>
<td>INHN</td>
<td>(V)</td>
<td>2.0</td>
</tr>
<tr>
<td>LOW-level input voltage</td>
<td>(V_{IL})</td>
<td>INHN</td>
<td>(V)</td>
<td>–</td>
</tr>
<tr>
<td>Current consumption</td>
<td>(I_{DD})</td>
<td>Measurement cct 3, load cct 1, INHN = open, (C_{L} = 15pF), (f = 30MHz)</td>
<td>(mA)</td>
<td>5010EA1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5010EA2</td>
</tr>
<tr>
<td>INHN pull-up resistance</td>
<td>(R_{UP2})</td>
<td>Measurement cct 4</td>
<td>(k\Omega)</td>
<td>40</td>
</tr>
<tr>
<td>Feedback resistance</td>
<td>(R_{f})</td>
<td>Measurement cct 5</td>
<td>(k\Omega)</td>
<td>80</td>
</tr>
<tr>
<td>Oscillator amplifier output resistance</td>
<td>(R_{D})</td>
<td>Design value</td>
<td>(\Omega)</td>
<td>690</td>
</tr>
<tr>
<td>Built-in capacitance</td>
<td>(C_{G})</td>
<td>Design value. A monitor pattern on a wafer is tested.</td>
<td>(pF)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>(C_{D})</td>
<td></td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

5V operation: \(V_{DD} = 4.5 \) to 5.5V, \(V_{SS} = 0V \), \(Ta = -40 \) to +85°C unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH-level output voltage</td>
<td>(V_{OH})</td>
<td>Q: Measurement cct 1, (V_{DD} = 4.5V), (I_{OH} = 3.2mA)</td>
<td>(V)</td>
<td>3.9</td>
</tr>
<tr>
<td>LOW-level output voltage</td>
<td>(V_{OL})</td>
<td>Q: Measurement cct 2, (V_{DD} = 4.5V), (I_{OL} = 3.2mA)</td>
<td>(V)</td>
<td>–</td>
</tr>
<tr>
<td>HIGH-level input voltage</td>
<td>(V_{IH})</td>
<td>INHN</td>
<td>(V)</td>
<td>2.0</td>
</tr>
<tr>
<td>LOW-level input voltage</td>
<td>(V_{IL})</td>
<td>INHN</td>
<td>(V)</td>
<td>–</td>
</tr>
<tr>
<td>Current consumption</td>
<td>(I_{DD1})</td>
<td>Measurement cct 3, load cct 1, INHN = open, (C_{L} = 15pF), (f = 30MHz)</td>
<td>(mA)</td>
<td>5010EA1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5010EA2</td>
</tr>
<tr>
<td></td>
<td>(I_{DD2})</td>
<td>Measurement cct 3, load cct 1, INHN = open, (C_{L} = 15pF), (f = 40MHz)</td>
<td>(mA)</td>
<td>5010EA1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5010EA2</td>
</tr>
<tr>
<td>INHN pull-up resistance</td>
<td>(R_{UP2})</td>
<td>Measurement cct 4</td>
<td>(k\Omega)</td>
<td>40</td>
</tr>
<tr>
<td>Feedback resistance</td>
<td>(R_{f})</td>
<td>Measurement cct 5</td>
<td>(k\Omega)</td>
<td>80</td>
</tr>
<tr>
<td>Oscillator amplifier output resistance</td>
<td>(R_{D})</td>
<td>Design value</td>
<td>(\Omega)</td>
<td>690</td>
</tr>
<tr>
<td>Built-in capacitance</td>
<td>(C_{G})</td>
<td>Design value. A monitor pattern on a wafer is tested.</td>
<td>(pF)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>(C_{D})</td>
<td></td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>
5010FNx series

3V operation: $V_{DD} = 2.7$ to $3.6V$, $V_{SS} = 0V$, $Ta = -10$ to $+70^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH-level output voltage</td>
<td>V_{OH}</td>
<td>Q: Measurement cct 1, $V_{DD} = 2.7V$, $I_{OH} = 8mA$</td>
<td>2.2</td>
<td>2.4</td>
</tr>
<tr>
<td>LOW-level output voltage</td>
<td>V_{OL}</td>
<td>Q: Measurement cct 2, $V_{DD} = 2.7V$, $I_{OL} = 8mA$</td>
<td>–</td>
<td>0.3</td>
</tr>
<tr>
<td>HIGH-level input voltage</td>
<td>V_{IH}</td>
<td>INHN</td>
<td>2.0</td>
<td>–</td>
</tr>
<tr>
<td>LOW-level input voltage</td>
<td>V_{IL}</td>
<td>INHN</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Output leakage current</td>
<td>I_Z</td>
<td>Q: Measurement cct 2, INHN = LOW, $V_{DD} = 3.6V$</td>
<td>$V_{OH} = V_{DD}$</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$V_{OL} = V_{SS}$</td>
<td>–</td>
</tr>
<tr>
<td>Current consumption</td>
<td>I_{DD}</td>
<td>Measurement cct 3, load cct 1, INHN = open, $C_L = 15pF$</td>
<td>5010FNA, FNC $f = 30MHz$</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010FND $f = 40MHz$</td>
<td>–</td>
</tr>
<tr>
<td>INHN pull-up resistance</td>
<td>R_{UP}</td>
<td>Measurement cct 4</td>
<td>5010FNA</td>
<td>40</td>
</tr>
<tr>
<td>Feedback resistance</td>
<td>R_i</td>
<td>Measurement cct 5</td>
<td>5010FNA</td>
<td>3.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010FNC</td>
<td>2.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010FND</td>
<td>1.87</td>
</tr>
<tr>
<td>Built-in capacitance</td>
<td>C_G</td>
<td>Design value. A monitor pattern on a wafer is tested.</td>
<td>5010FNA</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010FNC</td>
<td>9.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010FND</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td>C_D</td>
<td></td>
<td>5010FNA</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010FNC</td>
<td>15.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5010FND</td>
<td>15.3</td>
</tr>
</tbody>
</table>
SM5010 series

5V operation: $V_{DD} = 4.5$ to $5.5V$, $V_{SS} = 0V$

$30 \leq f \leq 50MHz$: $Ta = -20$ to $+80^\circ C$, $50 < f \leq 70MHz$: $Ta = -15$ to $+75^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>min</td>
<td>typ</td>
</tr>
<tr>
<td>HIGH-level output voltage</td>
<td>V_{OH}</td>
<td>Q: Measurement cct 1, $V_{DD} = 4.5V$, $I_{OH} = 16mA$</td>
<td>3.9</td>
<td>4.2</td>
</tr>
<tr>
<td>LOW-level output voltage</td>
<td>V_{OL}</td>
<td>Q: Measurement cct 2, $V_{DD} = 4.5V$, $I_{OL} = 16mA$</td>
<td>–</td>
<td>0.3</td>
</tr>
<tr>
<td>HIGH-level input voltage</td>
<td>V_{IH}</td>
<td>INHN</td>
<td>2.0</td>
<td>–</td>
</tr>
<tr>
<td>LOW-level input voltage</td>
<td>V_{IL}</td>
<td>INHN</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Output leakage current</td>
<td>I_{2}</td>
<td>Q: Measurement cct 2, INHN = LOW, $V_{DD} = 5.5V$</td>
<td>$V_{OH} = V_{DD}$</td>
<td>–</td>
</tr>
<tr>
<td>Current consumption</td>
<td>I_{DD1}</td>
<td>Measurement cct 3, load cct 1, INHN = open, $C_L = 15pF$</td>
<td>$5010FNE$, $f = 70MHz$</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>I_{DD2}</td>
<td>Measurement cct 3, load cct 1, INHN = open, $C_L = 50pF$</td>
<td>$5010FNA$, FNC, $f = 40MHz$</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$5010FND$, $f = 50MHz$</td>
<td>–</td>
</tr>
<tr>
<td>INHN pull-up resistance</td>
<td>R_{UP}</td>
<td>Measurement cct 4</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>Feedback resistance</td>
<td>R_{f}</td>
<td>Measurement cct 5</td>
<td>$5010FNA$</td>
<td>3.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$5010FNC$</td>
<td>2.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$5010FND$</td>
<td>1.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$5010FNE$</td>
<td>1.87</td>
</tr>
<tr>
<td>Built-in capacitance</td>
<td>C_{G}</td>
<td>Design value. A monitor pattern on a wafer is tested.</td>
<td>$5010FNA$</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td>C_{D}</td>
<td></td>
<td>$5010FNC$</td>
<td>9.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$5010FND$</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$5010FNE$</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$5010FNA$</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$5010FNC$</td>
<td>15.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$5010FND$</td>
<td>15.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$5010FNE$</td>
<td>13.5</td>
</tr>
</tbody>
</table>
5010FH× series

5V operation: $V_{DD} = 4.5$ to 5.5V, $V_{SS} = 0$V

$30 \leq f \leq 50$MHz: $Ta = −20$ to +80°C, $50 < f \leq 60$MHz: $Ta = −15$ to +75°C unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH-level output voltage</td>
<td>V_{OH}</td>
<td>Q: Measurement cct 1, $V_{DD} = 4.5V, I_{OH} = 4mA$</td>
<td>3.9</td>
<td>V</td>
</tr>
<tr>
<td>LOW-level output voltage</td>
<td>V_{OL}</td>
<td>Q: Measurement cct 2, $V_{DD} = 4.5V, I_{OL} = 4mA$</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>HIGH-level input voltage</td>
<td>V_{IH}</td>
<td>INHN</td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td>LOW-level input voltage</td>
<td>V_{IL}</td>
<td>INHN</td>
<td>–</td>
<td>0.8</td>
</tr>
<tr>
<td>Output leakage current</td>
<td>I_{Z}</td>
<td>Q: Measurement cct 2, INHN = LOW, $V_{DD} = 5.5V$</td>
<td>$V_{OH} = V_{DD}$</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$V_{OL} = V_{SS}$</td>
<td>–</td>
</tr>
<tr>
<td>Current consumption</td>
<td>I_{DD}</td>
<td>Measurement cct 3, load cct 1, INHN = open, $C_{L} = 15pF$</td>
<td>$f = 40$MHz</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$f = 50$MHz</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$f = 60$MHz</td>
<td>17</td>
</tr>
<tr>
<td>INHN pull-up resistance</td>
<td>R_{LP}</td>
<td>Measurement cct 4</td>
<td>40</td>
<td>100</td>
</tr>
</tbody>
</table>

5010HN×, HK× series

5V operation: $V_{DD} = 4.5$ to 5.5V, $V_{SS} = 0$V, $Ta = −40$ to +85°C unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH-level output voltage</td>
<td>V_{OH}</td>
<td>Q: Measurement cct 1, $V_{DD} = 4.5V, I_{OH} = 16mA$</td>
<td>3.9</td>
<td>V</td>
</tr>
<tr>
<td>LOW-level output voltage</td>
<td>V_{OL}</td>
<td>Q: Measurement cct 2, $V_{DD} = 4.5V, I_{OL} = 16mA$</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>HIGH-level input voltage</td>
<td>V_{IH}</td>
<td>INHN</td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td>LOW-level input voltage</td>
<td>V_{IL}</td>
<td>INHN</td>
<td>–</td>
<td>0.8</td>
</tr>
<tr>
<td>Output leakage current</td>
<td>I_{Z}</td>
<td>Q: Measurement cct 2, INHN = LOW, $V_{DD} = 5.5V$</td>
<td>$V_{OH} = V_{DD}$</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$V_{OL} = V_{SS}$</td>
<td>–</td>
</tr>
<tr>
<td>Current consumption</td>
<td>I_{DD1}</td>
<td>Measurement cct 3, load cct 2, INHN = open, $C_{L} = 15pF, f = 50$MHz</td>
<td>5010HK1</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>I_{DD2}</td>
<td>Measurement cct 3, load cct 1, INHN = open, $C_{L} = 50pF, f = 50$MHz</td>
<td>5010HN1</td>
<td>25</td>
</tr>
<tr>
<td>INHN pull-up resistance</td>
<td>R_{LP}</td>
<td>Measurement cct 4</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>Feedback resistance</td>
<td>R_{f}</td>
<td>Measurement cct 5</td>
<td>80</td>
<td>200</td>
</tr>
<tr>
<td>Built-in capacitance</td>
<td>C_{D}</td>
<td>Design value. A monitor pattern on a wafer is tested.</td>
<td>11.7</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>C_{D}</td>
<td>Design value. A monitor pattern on a wafer is tested.</td>
<td>15.3</td>
<td>17</td>
</tr>
</tbody>
</table>
Switching Characteristics

5010AN×, BN×, DN× series

3V operation/Duty level: CMOS

V_{DD} = 2.7 to 3.6V, V_{SS} = 0V, Ta = −10 to +70°C unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Measurement cct 6, load cct 1, C_{L} = 15pF</td>
<td>min/typ/max</td>
<td></td>
</tr>
<tr>
<td>Output rise time</td>
<td>t_{r1}</td>
<td>0.1V_{DD} to 0.9V_{DD}</td>
<td>–</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measurement cct 6, load cct 1, C_{L} = 50pF</td>
<td>–</td>
<td>6.0</td>
</tr>
<tr>
<td>Output fall time</td>
<td>t_{f1}</td>
<td>0.9V_{DD} to 0.1V_{DD}</td>
<td>–</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measurement cct 6, load cct 1, V_{DD} = 3.0V</td>
<td>–</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ta = 25°C, C_{L} = 15pF, f = 30MHz</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Output duty cycle¹</td>
<td>Duty</td>
<td>Measurement cct 6, load cct 1, V_{DD} = 3.0V</td>
<td>40</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ta = 25°C, C_{L} = 15pF</td>
<td>–</td>
<td>60 %</td>
</tr>
<tr>
<td>Output disable delay time</td>
<td>t_{PLZ}</td>
<td>Measurement cct 7, load cct 1, V_{DD} = 3.0V</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ta = 25°C, C_{L} = 15pF</td>
<td>–</td>
<td>100</td>
</tr>
<tr>
<td>Output enable delay time</td>
<td>t_{PZL}</td>
<td>Measurement cct 7, load cct 1, V_{DD} = 3.0V</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ta = 25°C, C_{L} = 15pF</td>
<td>–</td>
<td>100</td>
</tr>
</tbody>
</table>

1. The duty cycle characteristic is checked the sample chips of each production lot.

5010AN×, AK×, BN×, BK×, DN× series

5V operation/Duty level: CMOS (5010AN×, BN×, DN1)

V_{DD} = 4.5 to 5.5V, V_{SS} = 0V, Ta = −40 to +85°C unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Measurement cct 6, load cct 1, C_{L} = 50pF</td>
<td>min/typ/max</td>
<td></td>
</tr>
<tr>
<td>Output rise time</td>
<td>t_{r1}</td>
<td>0.1V_{DD} to 0.9V_{DD}</td>
<td>–</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>t_{r2}</td>
<td>0.9V_{DD} to 1.0V_{DD}</td>
<td>–</td>
<td>4.0</td>
</tr>
<tr>
<td>Output fall time</td>
<td>t_{f1}</td>
<td>0.9V_{DD} to 0.1V_{DD}</td>
<td>–</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>t_{f2}</td>
<td>0.1V_{DD} to 0.9V_{DD}</td>
<td>–</td>
<td>4.0</td>
</tr>
<tr>
<td>Output duty cycle¹</td>
<td>Duty</td>
<td>Measurement cct 6, load cct 1, V_{DD} = 5.0V</td>
<td>45</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ta = 25°C, C_{L} = 50pF, f = 30MHz</td>
<td>–</td>
<td>55 %</td>
</tr>
<tr>
<td>Output disable delay time</td>
<td>t_{PLZ}</td>
<td>Measurement cct 7, load cct 1, V_{DD} = 5.0V</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ta = 25°C, C_{L} = 50pF</td>
<td>–</td>
<td>100</td>
</tr>
<tr>
<td>Output enable delay time</td>
<td>t_{PZL}</td>
<td>Measurement cct 7, load cct 1, V_{DD} = 5.0V</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ta = 25°C, C_{L} = 50pF</td>
<td>–</td>
<td>100</td>
</tr>
</tbody>
</table>

1. The duty cycle characteristic is checked the sample chips of each production lot.

5V operation/Duty level: TTL (5010×K1, AN2, AN3, AN4, BN2, BN3, BN4, BN5)

V_{DD} = 4.5 to 5.5V, V_{SS} = 0V, Ta = −40 to +85°C unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Measurement cct 6, load cct 2, C_{L} = 15pF</td>
<td>min/typ/max</td>
<td></td>
</tr>
<tr>
<td>Output rise time</td>
<td>t_{r3}</td>
<td>0.4V to 2.4V</td>
<td>–</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measurement cct 6, load cct 2, C_{L} = 50pF</td>
<td>–</td>
<td>3.0</td>
</tr>
<tr>
<td>Output fall time</td>
<td>t_{f3}</td>
<td>2.4V to 0.4V</td>
<td>–</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measurement cct 6, load cct 2, V_{DD} = 5.0V</td>
<td>45</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ta = 25°C, C_{L} = 15pF, f = 30MHz</td>
<td>–</td>
<td>55 %</td>
</tr>
<tr>
<td>Output duty cycle¹</td>
<td>Duty</td>
<td>Measurement cct 6, load cct 2, V_{DD} = 5.0V</td>
<td>45</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ta = 25°C, C_{L} = 15pF</td>
<td>–</td>
<td>55 %</td>
</tr>
<tr>
<td>Output disable delay time</td>
<td>t_{PLZ}</td>
<td>Measurement cct 7, load cct 2, V_{DD} = 5.0V</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ta = 25°C, C_{L} = 15pF</td>
<td>–</td>
<td>100</td>
</tr>
<tr>
<td>Output enable delay time</td>
<td>t_{PZL}</td>
<td>Measurement cct 7, load cct 2, V_{DD} = 5.0V</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ta = 25°C, C_{L} = 15pF</td>
<td>–</td>
<td>100</td>
</tr>
</tbody>
</table>

1. The duty cycle characteristic is checked the sample chips of each production lot.
SM5010 series

5010AH×, BH× series

3V operation/Duty level: CMOS

\(V_{DD} = 2.7\) to 3.6V, \(V_{SS} = 0V\), \(Ta = -10\) to +70°C unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\min)</td>
<td>(\text{typ})</td>
</tr>
<tr>
<td>Output rise time</td>
<td>(t_{r1})</td>
<td>Measurement cct 6, load cct 1, (C_L = 15, \mu\text{F}), (0.1V_{DD}) to 0.9(V_{DD})</td>
<td>--</td>
<td>8</td>
</tr>
<tr>
<td>Output fall time</td>
<td>(t_{f1})</td>
<td>Measurement cct 6, load cct 1, (C_L = 15, \mu\text{F}), 0.9(V_{DD}) to 0.1(V_{DD})</td>
<td>--</td>
<td>8</td>
</tr>
<tr>
<td>Output duty cycle(^1)</td>
<td>(D)</td>
<td>Measurement cct 6, load cct 1, (V_{DD} = 3.0V), (Ta = 25°C), (C_L = 15, \mu\text{F}), (f = 16\text{MHz})</td>
<td>40</td>
<td>--</td>
</tr>
<tr>
<td>Output disable delay time</td>
<td>(t_{PLZ})</td>
<td>Measurement cct 7, load cct 1, (V_{DD} = 3.0V), (Ta = 25°C), (C_L = 15, \mu\text{F})</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Output enable delay time</td>
<td>(t_{PZL})</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

1. The duty cycle characteristic is checked the sample chips of each production lot.

5V operation/Duty level: CMOS

\(V_{DD} = 4.5\) to 5.5V, \(V_{SS} = 0V\), \(Ta = -40\) to +85°C unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\min)</td>
<td>(\text{typ})</td>
</tr>
<tr>
<td>Output rise time</td>
<td>(t_{r1})</td>
<td>Measurement cct 6, load cct 1, (0.1V_{DD}) to 0.9(V_{DD}) (C_L = 15, \mu\text{F})</td>
<td>--</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(t_{r2})</td>
<td>(C_L = 50, \mu\text{F})</td>
<td>--</td>
<td>13</td>
</tr>
<tr>
<td>Output fall time</td>
<td>(t_{f1})</td>
<td>Measurement cct 6, load cct 1, (0.9V_{DD}) to 0.1(V_{DD}) (C_L = 15, \mu\text{F})</td>
<td>--</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(t_{f2})</td>
<td>(C_L = 50, \mu\text{F})</td>
<td>--</td>
<td>13</td>
</tr>
<tr>
<td>Output duty cycle(^1)</td>
<td>(D)</td>
<td>Measurement cct 6, load cct 1, (V_{DD} = 5.0V), (Ta = 25°C), (C_L = 15, \mu\text{F}), (f = 30\text{MHz})</td>
<td>45</td>
<td>--</td>
</tr>
<tr>
<td>Output disable delay time</td>
<td>(t_{PLZ})</td>
<td>Measurement cct 7, load cct 1, (V_{DD} = 5.0V), (Ta = 25°C), (C_L = 15, \mu\text{F})</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Output enable delay time</td>
<td>(t_{PZL})</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

1. The duty cycle characteristic is checked the sample chips of each production lot.
SM5010 series

5010CL× series

3V operation/Duty level: CMOS

\(V_{DD} = 2.7 \) to 3.6V, \(V_{SS} = 0V \), \(Ta = -20 \) to +80°C unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rate</th>
<th>min</th>
<th>typ</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output rise time</td>
<td>(t_{11})</td>
<td>Measurement cct 6, load cct 1, (0.1V_{DD}) to (0.9V_{DD})</td>
<td>CL = 15pF</td>
<td>–</td>
<td>2.0</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>(t_{14})</td>
<td></td>
<td>CL = 30pF</td>
<td>–</td>
<td>3.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Output fall time</td>
<td>(t_{11})</td>
<td>Measurement cct 6, load cct 1, (0.9V_{DD}) to (0.1V_{DD})</td>
<td>CL = 15pF</td>
<td>–</td>
<td>2.0</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>(t_{14})</td>
<td></td>
<td>CL = 30pF</td>
<td>–</td>
<td>3.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Output duty cycle(^1)</td>
<td>Duty</td>
<td>Measurement cct 6, load cct 1, (V_{DD} = 3.0V), (V_{SS} = 0V), (Ta = 25°C), (CL = 15pF), (f = 30MHz)</td>
<td>–</td>
<td>45</td>
<td>–</td>
<td>55</td>
</tr>
<tr>
<td>Output disable delay time(^2)</td>
<td>(t_{PLZ})</td>
<td>Measurement cct 7, load cct 1, (V_{DD} = 3.0V), (V_{SS} = 0V), (Ta = 25°C), (CL = 15pF)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>100</td>
</tr>
<tr>
<td>Output enable delay time(^2)</td>
<td>(t_{PZL})</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>100</td>
</tr>
</tbody>
</table>

1. The duty cycle characteristic is checked the sample chips of each production lot.
2. Oscillator stop function is built-in. When \(INHN \) goes LOW, normal output stops. When \(INHN \) goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

5V operation/Duty level: CMOS

\(V_{DD} = 4.5 \) to 5.5V, \(V_{SS} = 0V \), \(Ta = -40 \) to +85°C unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rate</th>
<th>min</th>
<th>typ</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output rise time</td>
<td>(t_{11})</td>
<td>Measurement cct 6, load cct 1, (0.1V_{DD}) to (0.9V_{DD})</td>
<td>CL = 15pF</td>
<td>–</td>
<td>1.5</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>(t_{12})</td>
<td></td>
<td>CL = 50pF</td>
<td>–</td>
<td>4.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Output fall time</td>
<td>(t_{11})</td>
<td>Measurement cct 6, load cct 1, (0.9V_{DD}) to (0.1V_{DD})</td>
<td>CL = 15pF</td>
<td>–</td>
<td>1.5</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>(t_{12})</td>
<td></td>
<td>CL = 50pF</td>
<td>–</td>
<td>4.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Output duty cycle(^1)</td>
<td>Duty</td>
<td>Measurement cct 6, load cct 1, (V_{DD} = 5.0V), (V_{SS} = 0V), (Ta = 25°C), (CL = 50pF), (f = 30MHz)</td>
<td>–</td>
<td>40</td>
<td>–</td>
<td>60</td>
</tr>
<tr>
<td>Output disable delay time(^2)</td>
<td>(t_{PLZ})</td>
<td>Measurement cct 7, load cct 1, (V_{DD} = 5.0V), (V_{SS} = 0V), (Ta = 25°C), (CL = 15pF)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>100</td>
</tr>
<tr>
<td>Output enable delay time(^2)</td>
<td>(t_{PZL})</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>100</td>
</tr>
</tbody>
</table>

1. The duty cycle characteristic is checked the sample chips of each production lot.
2. Oscillator stop function is built-in. When \(INHN \) goes LOW, normal output stops. When \(INHN \) goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.
SM5010 series

5010EA× series

3V operation/Duty level: CMOS

$V_{DD} = 2.7$ to 3.6V, $V_{SS} = 0V$, $Ta = −10$ to $+70°C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>min</td>
<td>typ</td>
</tr>
<tr>
<td>Output rise time</td>
<td>t_{r1}</td>
<td>Measurement cct 6, load cct 1, $C_L = 15pF$, $0.1V_{DD}$ to $0.9V_{DD}$</td>
<td>–</td>
<td>8</td>
</tr>
<tr>
<td>Output fall time</td>
<td>t_{f1}</td>
<td>Measurement cct 6, load cct 1, $C_L = 15pF$, $0.9V_{DD}$ to $0.1V_{DD}$</td>
<td>–</td>
<td>8</td>
</tr>
<tr>
<td>Output duty cycle1</td>
<td>Duty</td>
<td>Measurement cct 6, load cct 1, $V_{DD} = 3.0V$, $Ta = 25°C$, $C_L = 15pF$, $f = 30MHz$</td>
<td>40</td>
<td>–</td>
</tr>
<tr>
<td>Output disable delay time2</td>
<td>t_{PLZ}</td>
<td>Measurement cct 7, load cct 1, $V_{DD} = 3.0V$, $Ta = 25°C$, $C_L = 15pF$</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Output enable delay time2</td>
<td>t_{PZL}</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

1. The duty cycle characteristic is checked the sample chips of each production lot.
2. Oscillator stop function is built-in. When INHN goes LOW, normal output stops. When INHN goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

5V operation/Duty level: CMOS

$V_{DD} = 4.5$ to 5.5V, $V_{SS} = 0V$, $Ta = −40$ to $+85°C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>min</td>
<td>typ</td>
</tr>
<tr>
<td>Output rise time</td>
<td>t_{r1}</td>
<td>Measurement cct 6, load cct 1, $0.1V_{DD}$ to $0.9V_{DD}$, $C_L = 15pF$</td>
<td>–</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>t_{r2}</td>
<td>$C_L = 50pF$</td>
<td>–</td>
<td>13</td>
</tr>
<tr>
<td>Output fall time</td>
<td>t_{f1}</td>
<td>Measurement cct 6, load cct 1, $0.9V_{DD}$ to $0.1V_{DD}$, $C_L = 15pF$</td>
<td>–</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>t_{f2}</td>
<td>$C_L = 50pF$</td>
<td>–</td>
<td>13</td>
</tr>
<tr>
<td>Output duty cycle1</td>
<td>Duty1</td>
<td>Measurement cct 6, load cct 1, $V_{DD} = 5.0V$, $Ta = 25°C$, $C_L = 15pF$, $f = 30MHz$</td>
<td>45</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Duty2</td>
<td>$V_{DD} = 5.0V$, $Ta = 25°C$, $C_L = 15pF$, $f = 40MHz$</td>
<td>40</td>
<td>–</td>
</tr>
<tr>
<td>Output disable delay time2</td>
<td>t_{PLZ}</td>
<td>Measurement cct 7, load cct 1, $V_{DD} = 5.0V$, $Ta = 25°C$, $C_L = 15pF$</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Output enable delay time2</td>
<td>t_{PZL}</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

1. The duty cycle characteristic is checked the sample chips of each production lot.
2. Oscillator stop function is built-in. When INHN goes LOW, normal output stops. When INHN goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.
5010FN× series

3V operation/Duty level: CMOS

\[V_{DD} = 2.7 \text{ to } 3.6 \text{V}, \ V_{SS} = 0 \text{V}, \ \text{Ta} = -10 \text{ to } +70^\circ \text{C} \text{ unless otherwise noted.} \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output rise time</td>
<td>(t_{r1})</td>
<td>Measurement cct 6, load cct 1, (C_L = 15 \text{pF}, 0.1V_{DD} \text{ to } 0.9V_{DD})</td>
<td>–</td>
<td>3.0</td>
</tr>
<tr>
<td>Output fall time</td>
<td>(t_{f1})</td>
<td>Measurement cct 6, load cct 1, (C_L = 15 \text{pF}, 0.9V_{DD} \text{ to } 0.1V_{DD})</td>
<td>–</td>
<td>3.0</td>
</tr>
<tr>
<td>Output duty cycle(^1)</td>
<td>Duty</td>
<td>Measurement cct 6, load cct 1, (V_{DD} = 3.0 \text{V}, \ \text{Ta} = 25^\circ \text{C}, \ C_L = 15 \text{pF}, f = 40 \text{MHz})</td>
<td>40</td>
<td>–</td>
</tr>
<tr>
<td>Output disable delay time</td>
<td>(t_{PLZ})</td>
<td>Measurement cct 7, load cct 1, (V_{DD} = 3.0 \text{V}, \ \text{Ta} = 25^\circ \text{C}, \ C_L = 15 \text{pF})</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Output enable delay time</td>
<td>(t_{PZL})</td>
<td>–</td>
<td>–</td>
<td>100 ns</td>
</tr>
</tbody>
</table>

\(^1\) The duty cycle characteristic is checked the sample chips of each production lot.

5V operation/Duty level: CMOS

\[V_{DD} = 4.5 \text{ to } 5.5 \text{V}, \ V_{SS} = 0 \text{V} \]

\[30 \leq f \leq 50 \text{MHz}: \ \text{Ta} = -20 \text{ to } +80^\circ \text{C}, \ \text{50} < f \leq 70 \text{MHz}: \ \text{Ta} = -15 \text{ to } +75^\circ \text{C} \text{ unless otherwise noted.} \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output rise time</td>
<td>(t_{r1})</td>
<td>Measurement cct 6, load cct 1, (0.1V_{DD} \text{ to } 0.9V_{DD})</td>
<td>(C_L = 15 \text{pF})</td>
<td>–</td>
</tr>
<tr>
<td>Output fall time</td>
<td>(t_{f1})</td>
<td>Measurement cct 6, load cct 1, (0.9V_{DD} \text{ to } 0.1V_{DD})</td>
<td>(C_L = 15 \text{pF})</td>
<td>–</td>
</tr>
<tr>
<td>Output duty cycle(^1)</td>
<td>Duty</td>
<td>Measurement cct 6, load cct 1, (V_{DD} = 3.0 \text{V}, \ \text{Ta} = 25^\circ \text{C}, \ C_L = 15 \text{pF}, f = 40 \text{MHz})</td>
<td>45</td>
<td>–</td>
</tr>
<tr>
<td>Output disable delay time</td>
<td>(t_{PLZ})</td>
<td>Measurement cct 7, load cct 1, (V_{DD} = 5.0 \text{V}, \ \text{Ta} = 25^\circ \text{C}, \ C_L = 15 \text{pF})</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Output enable delay time</td>
<td>(t_{PZL})</td>
<td>–</td>
<td>–</td>
<td>100 ns</td>
</tr>
</tbody>
</table>

\(^1\) The duty cycle characteristic is checked the sample chips of each production lot.
SM5010 series

5010FH× series

5V operation/Duty level: CMOS

\(V_{DD} = 4.5 \) to 5.5V, \(V_{SS} = 0V \)

\(30 \leq f \leq 50\text{MHz}: Ta = -20 \) to +80°C, \(50 < f \leq 60\text{MHz}: Ta = -15 \) to +75°C unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output rise time</td>
<td>(t_{r1})</td>
<td>Measurement cct 6, load cct 1, 0.1(V_{DD}) to 0.9(V_{DD}) (C_L = 15\text{pF})</td>
<td>–</td>
<td>4</td>
<td>8</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(t_{r2})</td>
<td>(C_L = 50\text{pF})</td>
<td>–</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Output fall time</td>
<td>(t_{f1})</td>
<td>Measurement cct 6, load cct 1, 0.9(V_{DD}) to 0.1(V_{DD}) (C_L = 15\text{pF})</td>
<td>–</td>
<td>4</td>
<td>8</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(t_{f2})</td>
<td>(C_L = 50\text{pF})</td>
<td>–</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Output duty cycle(^1)</td>
<td>Duty</td>
<td>Measurement cct 6, load cct 1, (V_{DD} = 5.0V), (Ta = 25^\circ\text{C}), (C_L = 15\text{pF})</td>
<td>45</td>
<td>–</td>
<td>55</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f = 50\text{MHz})</td>
<td>40</td>
<td>–</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Output disable delay time</td>
<td>(t_{PLZ})</td>
<td>Measurement cct 7, load cct 1, (V_{DD} = 5.0V), (Ta = 25^\circ\text{C}), (C_L = 15\text{pF})</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td>Output enable delay time</td>
<td>(t_{PZL})</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>ns</td>
</tr>
</tbody>
</table>

1. The duty cycle characteristic is checked the sample chips of each production lot.

5010HN× series

5V operation/Duty level: CMOS

\(V_{DD} = 4.5 \) to 5.5V, \(V_{SS} = 0V \), \(Ta = -40 \) to +85°C unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output rise time</td>
<td>(t_{r1})</td>
<td>Measurement cct 6, load cct 1, 0.1(V_{DD}) to 0.9(V_{DD}) (C_L = 15\text{pF})</td>
<td>–</td>
<td>1.5</td>
<td>3.0</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(t_{r2})</td>
<td>(C_L = 50\text{pF})</td>
<td>–</td>
<td>3.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>Output fall time</td>
<td>(t_{f1})</td>
<td>Measurement cct 6, load cct 1, 0.9(V_{DD}) to 0.1(V_{DD}) (C_L = 15\text{pF})</td>
<td>–</td>
<td>1.5</td>
<td>3.0</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(t_{f2})</td>
<td>(C_L = 50\text{pF})</td>
<td>–</td>
<td>3.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>Output duty cycle(^1)</td>
<td>Duty</td>
<td>Measurement cct 6, load cct 1, (V_{DD} = 5.0V), (Ta = 25^\circ\text{C}), (C_L = 50\text{pF}) (f = 50\text{MHz})</td>
<td>45</td>
<td>–</td>
<td>55</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f = 60\text{MHz})</td>
<td>40</td>
<td>–</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Output disable delay time</td>
<td>(t_{PLZ})</td>
<td>Measurement cct 7, load cct 1, (V_{DD} = 5.0V), (Ta = 25^\circ\text{C}), (C_L = 15\text{pF})</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td>Output enable delay time</td>
<td>(t_{PZL})</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>ns</td>
</tr>
</tbody>
</table>

1. The duty cycle characteristic is checked the sample chips of each production lot.
SM5010 series

5010HK× series

5V operation/Duty level: TTL

$V_{DD} = 4.5\text{ to } 5.5\text{V}, V_{SS} = 0\text{V}, Ta = -40\text{ to } +85^\circ\text{C}$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>$C_L = 50\text{pF}$</th>
<th>$C_L = 15\text{pF}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output rise time</td>
<td>t_{r3}</td>
<td>Measurement cct 6, load cct 2, 0.4V to 2.4V</td>
<td>2.0 ns</td>
<td>1.2 ns</td>
</tr>
<tr>
<td></td>
<td>t_{r5}</td>
<td>$C_L = 50\text{pF}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output fall time</td>
<td>t_{f3}</td>
<td>Measurement cct 6, load cct 2, 2.4V to 0.4V</td>
<td>2.0 ns</td>
<td>1.2 ns</td>
</tr>
<tr>
<td></td>
<td>t_{f5}</td>
<td>$C_L = 50\text{pF}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output duty cycle¹</td>
<td>Duty</td>
<td>Measurement cct 6, load cct 2, $V_{DD} = 5.0\text{V}, Ta = 25^\circ\text{C}$, $f = 50\text{MHz}$</td>
<td>$45%$</td>
<td>$55%$</td>
</tr>
<tr>
<td>Output disable delay time</td>
<td>t_{PLZ}</td>
<td>Measurement cct 7, load cct 2, $V_{DD} = 5.0\text{V}, Ta = 25^\circ\text{C}$, $C_L = 15\text{pF}$</td>
<td>100 ns</td>
<td></td>
</tr>
<tr>
<td>Output enable delay time</td>
<td>t_{PZL}</td>
<td>$C_L = 15\text{pF}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. The duty cycle characteristic is checked the sample chips of each production lot.

Current consumption and Output waveform with NPC’s standard crystal

![Diagram](image)

<table>
<thead>
<tr>
<th>f [MHz]</th>
<th>R [Ω]</th>
<th>L [mH]</th>
<th>C_a [fF]</th>
<th>C_b [pF]</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>17.2</td>
<td>4.36</td>
<td>6.46</td>
<td>2.26</td>
</tr>
<tr>
<td>40</td>
<td>16.8</td>
<td>2.90</td>
<td>5.47</td>
<td>2.08</td>
</tr>
</tbody>
</table>

for Fundamental oscillator

<table>
<thead>
<tr>
<th>f [MHz]</th>
<th>R [Ω]</th>
<th>L [mH]</th>
<th>C_a [fF]</th>
<th>C_b [pF]</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>18.62</td>
<td>16.24</td>
<td>1.733</td>
<td>5.337</td>
</tr>
<tr>
<td>40</td>
<td>20.53</td>
<td>11.34</td>
<td>1.396</td>
<td>3.989</td>
</tr>
<tr>
<td>50</td>
<td>22.17</td>
<td>7.40</td>
<td>1.370</td>
<td>4.105</td>
</tr>
<tr>
<td>60</td>
<td>15.37</td>
<td>3.83</td>
<td>1.836</td>
<td>5.191</td>
</tr>
<tr>
<td>70</td>
<td>25.42</td>
<td>4.18</td>
<td>1.254</td>
<td>5.170</td>
</tr>
</tbody>
</table>

for 3rd overtone oscillator
MEASUREMENT CIRCUITS

Measurement cct 1

- **2.0VP, 10MHz sine wave input signal (3V operation)**
- **3.5VP, 10MHz sine wave input signal (5V operation)**
- **C1 : 0.001µF**
- **R1 : 50Ω**
- **R2 : 5010AN, BN, DN, AK, BK**
 - **3V operation:** 263Ω
 - **5V operation:** 245Ω
- **5010FN, HN, HK**
 - **3V operation:** 275Ω
 - **5V operation:** 245Ω
- **5010CL**
 - **3V operation:** 275Ω
 - **5V operation:** 250Ω
- **5010EA, AH, BH, FH**
 - **3V operation:** 1050Ω
 - **5V operation:** 975Ω

Measurement cct 2

Measurement cct 3

- **2.0VP, 30MHz sine wave input signal (3V operation)**
- **3.5VP, 30MHz sine wave input signal (5V operation)**
- **C1 : 0.001µF**
- **R1 : 50Ω**

Measurement cct 4

- **Rpp = Vio / Ir (Vio = 0V)**
- **Rpp = Vio - Vii (Vio = 0.7Vcc)**

Measurement cct 5

Crystal oscillation
- **C0, C1 : 22pF (5010DNx)**
- **Rfo : 3.0kΩ (5010Hx)**

Measurement cct 6

Measurement cct 7
Load cct 1

Q output

\[\text{CL} \]

(Including probe capacitance)

\[C_L = 15\text{pF} : \text{DUTY} = t_{\text{HD}}, t_1, t_2 \]
\[C_L = 30\text{pF} : t_4, t_6 \]
\[C_L = 50\text{pF} : t_2, t_8 \]

Switching Time Measurement Waveform

Output duty level (CMOS)

Output duty level (TTL)

Output duty cycle (CMOS)

Output duty cycle (TTL)
SM5010 series

Output Enable/Disable Delay

INHN

Q output

INHN input waveform $t_r = t_f \leq 10 \text{ns}$

Note (CLx/EAx series only): when the device is in standby, the oscillator stops. When standby is released, the oscillator starts and stable oscillator output occurs after a short delay.
Please pay your attention to the following points at time of using the products shown in this document.

The products shown in this document (hereinafter “Products”) are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from SEIKO NPC CORPORATION (hereinafter “NPC”). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document do not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION
1-9-9, Hatchobori, Chuo-ku,
Tokyo 104-0032, Japan
Telephone: +81-3-5541-6501
Facsimile: +81-3-5541-6510
http://wwwnpc.co.jp/
Email: sales@npc.co.jp