

SAW resonator

Excellent startup

3.3 or 2.5 volt supply

Low Phase noise & jitter

Small board footprint

Internet infrastructure

Controlled Baseline

Product Traceability

Single Fabrication Site

Single Assembly/Test site

Extended Product Life-Cycle

LTE and wireless

Typical 300pS rise and fall times

Data and Voice Communications

DEFENSE. AEROSPACE and MEDICAL

Temperature Range –55°C to 125°C

Work over wide range of system loads

Rugged, reliable, LVDS clock

Work with Overtone, Fundamental, or

Single Chip 5x7mm solution

FEATURES

•

•

•

•

•

•

•

•

•

•

•

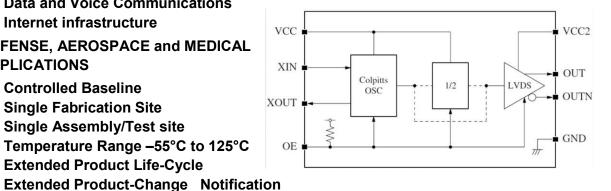
BENEFITS

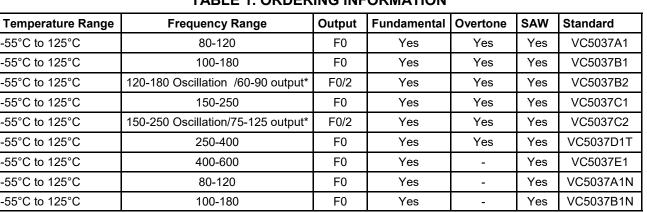
APPLICATIONS

APPLICATIONS

VC5037 Series

LVDS Oscillator ASIC -55°C to 125°C 80-600 MHz


GENERAL DESCRIPTION


The VC5037 series set the standard for high frequency differential LVDS oscillator ICs built in 5x7mm ceramic packages. They support 80 MHz to 600MHz output operation using fundamental crystals and 80 MHz to 400 MHz using 3rd overtone crystals

The devices are fabricated using a proprietary BiCMOS process with LVDS current limiting output to prevent short circuit and reduce EMI.

The VC5037 series is specified for -55°C to 125°C operation for extended range operation. For applications requiring processing to Mil-PRF-38534, refer to ordering guide table on page 8.

BLOCK DIAGRAM

TABLE 1. ORDERING INFORMATION

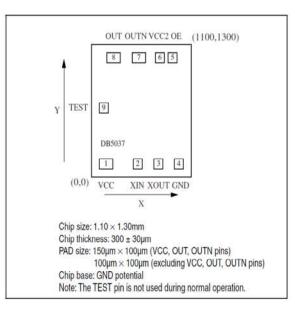

*3.3 volt operation only below 80MHz

TABLE OF CONTENTS

Description	Page
Physical Dimensions and Pad Layout	2
Pin descriptions	3
Absolute Maximum ratings	3
Electrical Characteristics (DC values)	4
Electrical Characteristics (AC values)	5
Function Description	6
Oscillator Circuit Constants	6
Oscillator Equivalent Circuits	7
Switching waveforms	8
Ordering Guide	8
Test measurement circuits	9
Important Notice	10

PHYSICAL DIMENSIONS AND PAD LAYOUT

Chip Size	Micron	Mils
Chip length X	1100	43.4
Chip length Y	1300	51.2
Chip thickness	330	13.0
Pad size		
VCC, OUT, OUTN	150x100	5.90x3.93
All other pads	100x100	3.93x3.93

Ded No. Nome		ŝ	Freedface		Pad dim. [µm]		
Pad No.	Name	I/O	Function		Y		
1	VCC	-	(+) supply pin	160	130		
2	XIN	Ι	Oscillator input pin	511	130		
3	XOUT	0	Oscillator output pin	740	130		
4	GND	-	(-)ground pin		130		
5	OE	I	Output enable pin. Outputs are high impedance when LOW (oscillator stopped). Power-saving pull-up resistor built-in		1170		
6	VCC2	-	(+)output buffer supply pin	756	1170		
7	OUTN	0	Output pin (complementary)	523	1170		
8	OUT	0	Output pin (true)	244	1170		
9	TEST	Ι	IC test pin. Leave open circuit for normal operation	136	678		

PIN DESCRIPTIONS AND PAD LOCATIONS

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage range	V _{cc}		0.5 to +5.0	V
Input voltage range	V _{IN}		GND-0.5 to V _{CC} +0.5	V
Output voltage range	V _{OUT}		GND-0.5 to V _{CC} +0.5	V
Storage temperature range	T _{STG}	Chip form	-65 to +150	°C
Junction temperature	TJ	Mounted	+175	°C

TABLE III Electrical Characteristics

DC Characteristics te				I	Datina		
Parameter	Symbol Condition			Rating Min Typ		Max	Unit
			VC5037Gx, Ax, Bx, Bxx, Cx,	IVIIII	тур	INIAX	
Current Consumption 1	I _{EE1}	Measurement Circuit 1, OE= open	Cxx, Dx, Dxx	-	-	66	mA
		OE- open	VC5037Ex	-	-	73	mA
Current Consumption 2	I _{EE2}	Measurement Circuit 1 OE	=LOW	-	-	30	μA
HIGH-level output voltage	V _{OH}	Measurement Circuit 1, OE	=open, RL=100Ω, OUT, OUTN	-	-	1.6	V
LOW-level output voltage	V _{OL}	pins f=100MHz		0.9	-	-	V
Differential output voltage	V _{OD}	Measurement Circuit 1, OE	=open, RL=100Ω, OUT- OUTN	247	-	454	mV
Differential output error	ΔV_{OD}	differential voltage, f=100M	Hz	-	-	50	mV
Offset Voltage	V _{OS}	Measurement circuit 1, OE	= open, RL= 100Ω, OUT–	1.125		1.375	V
Offset error	ΔV_{OS}	OUTN mid-level potential, f	= 100MHz			50	mV
Output leakage current	Ιz	OUT, OUTN pins: Measure	ment circuit 2, OE = LOW	-	-	10	μA
HIGH-level input voltage	VIH	Measurement circuit 1, OE	nin	0.7 VCC	-	-	V
LOW-level input voltage	V _{IL}		-	-	0.3 VCC	V	
LOW-level input current 1	I _{IL1}	Measurement circuit 1, VIL	= 0V, OE pin	-2		-20	μA
LOW-level input current 2	I _{IL2}	Measurement circuit 1, V _{IL} =	-20		-200	μA	
INHN pull-down resistance	RPD1	Measurement circuit 2, XIN pin			-	48	kΩ
DC Characteristics te	sted at 2	2.5 Volts unless other	wise specified				
Parameter	Symbol	Condition			Rating		Unit
Falameter	Symbol	Condition		Min	Тур	Мах	Unit
Current Consumption 1	I _{EE1}	Measurement Circuit 1, OE= open	VC5037Gx, Ax, Bx, Bxx, Cx, Cxx, Dx, Dxx	-	-	63	mA
		VC5037Ex		-	-	70	mA
Current Consumption 2	I _{EE2}	Measurement Circuit 1 OE	=LOW	-	-	30	μA
HIGH-level output voltage	V _{OH}	Measurement Circuit 1, OE	=open, RL=100Ω, OUT, OUTN	-	-	1.6	V
LOW-level output voltage	V _{OL}	pins f=100MHz		0.9	-	-	V
Differential output voltage	V_{OD}	Measurement Circuit 1, OE	=open, RL=100Ω, OUT- OUTN	247	-	454	mV
Differential output error	ΔV_{OD}	differential voltage, f=100M	-	-	50	mV	
Offset Voltage	Vos	Measurement circuit 1, OE	1.125		1.375	V	
Offset error	ΔV_{OS}	OUTN mid-level potential, f			50	mV	
Output leakage current	Ι _Ζ	OUT, OUTN pins: Measure	-	-	10	μA	
HIGH-level input voltage	V _{IH}	Massurament sireuit 1. OF	nin	0.7 VCC	-	-	V
LOW-level input voltage	V _{IL}	Measurement circuit 1, OE	pin	-	-	0.3 VCC	V
Lott lotol input toltage	1				-20		
LOW-level input current 1	I_{IL1}	Measurement circuit 1, VIL	= UV, OE pin	-2		-20	μA
1 0	I _{IL1}	Measurement circuit 1, V _{IL} Measurement circuit 1, V _{IL} =	· · · · · · · · · · · · · · · · · · ·	-2 -20		-200	μA μA

						Rating		
Parameter	Symbol	Condition			Min	Тур	Мах	Unit
Output Duty cycle	Duty	Measurement circuit 3 measu (crossing point)	ired at 0V differen	tial output	45	-	55	%
		VCA5037Gx:	VCC=3.3V	0.40	-	-	V	
			f-80MHz	VCC=2.5V	0.20	-	-	V
			VCA5037Ax:	VCC=3.3V	0.40	-	-	V
			-120MHz	VCC=2.5V	0.20	-	-	V
			VCA5037Bx:	VCC=3.3V	0.40	-	-	V
		Measurement circuit 3	f-180MHz	VCC=2.5V	0.20	-	-	V
Output Swing V _{Opp}	V		VCA5037Cx:	VCC=3.3V	0.40	-	-	V
	V Opp			VCC=2.5V	0.20	-	-	V
		реак-ю-реак		VCC=3.3V	0.40	-	-	V
				VCC=2.5V	0.20	-	-	V
			VCA5037E1: f-600MHz	VCC=3.3V	0.40	-	-	V
				VCC=2.5V	0.20	-	-	V
			VCA5037D1T:	VCC=3.3V	0.40	-	-	V
		f-400MHz	VCC=2.5V	0.20	-	-	V	
Output Pigo Timo	Tr			VCC=3.3V	-	-	0.7	ns
Output Rise Time Ti				VCC=2.5V	-	-	0.7	ns
Output Fall Time ⁷ Tf		Measurement circuit 3, 80 to 20% differential		VCC=3.3V	-	-	0.7	ns
				VCC=2.5V	-	-	0.7	ns
Output enable time	T_{OE}	Measurement circuit 1			-	-	2	ms
Output Disable time	T _{OD}	Measurement circuit 1	Measurement circuit 1		-	-	200	nS

FUNCTIONAL DESCRIPTION

Standby Function

When OE goes LOW, the oscillator stops and the output pins (OUT, OUTN) become high impedance

Power-saving Pull-up Resistor

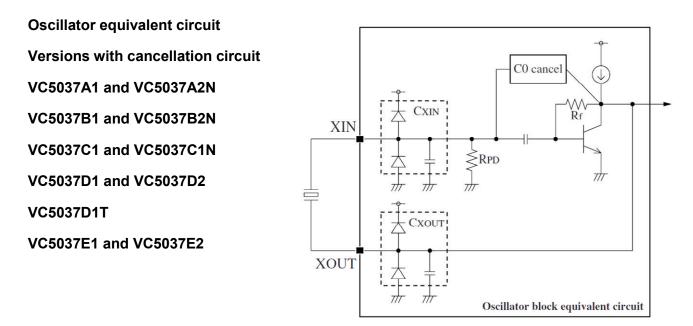
The OE pin pull-up resistance changes in response to the input level (HIGH or LOW). When OE is tied LOW (standby stage), the pullup resistance becomes large, reducing the current consumed by the resistance. When OE is open circuit, the pull-up resistance becomes small, decreasing the susceptibility to the effects of external noise.

Oscillation Detector Function

The VC5037 series features an oscillation detector circuit. This circuit functions to disable the outputs until the oscillator circuit starts and oscillation becomes stable. This alleviates the danger of abnormal oscillator output at oscillator start-up when power is applied or when OE is switched.

OSCILLATOR CIRCUIT CONSTANT

The VC5037 oscillator setting varies with the device version to optimize characteristics over the recommended operating frequency range.

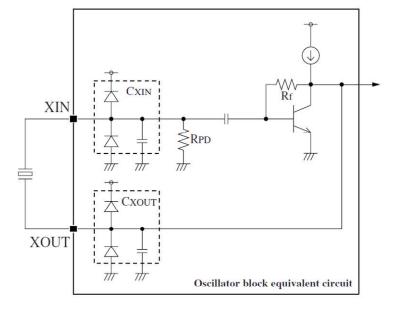

The VC5037A1/Bx/Cx/Dx versions are suitable for use of crystals units with large C0 value (approximately C0 \geq 2.0pF and for VC5037D1T C0 \geq 2.5pF. The VC5037Ex version is suitable for use of crystal unit with C0 value or approximately 2.0pF.

Version	Recommended crystal unit or	Built-in Capacita	nce [pF](note 1)	Recommended oscillation frequency range [MHz] (note 2)
	resonator	C _{XIN}	C _{XOUT}	
VC5037A1		12	12	80 to 120
VC5037Bx	Fundamental, 3rd overtone, SAW	8	8	100 to 180
VC5037Cx		6	6	150 to 250
VC5037A1N		12	16	80 to 120
VC5037B1N	Fundamental, SAW	11	13	110 to 180
VC5037Dx		5	5	250 to 400
VC5037Ex		5	5	400 to 600
VC5037D1T	Fundamental, 3rd overtone, SAW	5	5	250 to 400

1. The oscillator internal capacitance value includes parasitic capacitance

 The recommended oscillation frequency is a yardstick value derived from the crystal used for characteristics authentication. However, the oscillator frequency band is not guaranteed. Specifically the characteristics can vary greatly due to crystal characteristics (motional parameters and Quartz Q) and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.,

The VC5037 series oscillator circuit listed above have a C0 cancellation circuit built-in to improve the oscillator margins. If power is applied when there is an open circuit between XIN and XOUT, self oscillation (at approx 80MHz) may occur, which is not abnormal. Users should confirm that the oscillator operates normally when a crystal unit is connected. Note: Abnormally high crystal resistance may also result in self-oscillation.

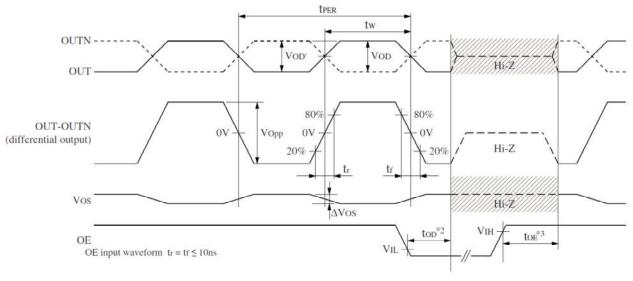

The XOUT pin of the VC5037E1 is sized for high frequency and its ESD protection circuit is smaller; Accordingly, electrostatic protection level is significantly lower than other pins and we recommend all ESD precautions be taken to prevent damage .

Oscillator equivalent circuit

Versions without cancellation circuit

VC5037A1N

VC5037B1N

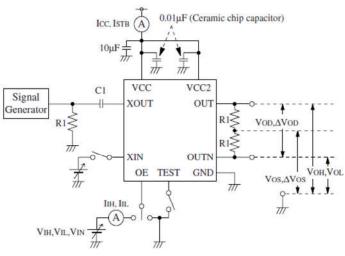

PACKING

IC are shipped as bare die / chip form and packed in 2" square waffle packs 400 chips per tray, nitrogen-purged and vacuum sealed, and labeled at minimum with:

Manufacturer Part number Lot code Quantity

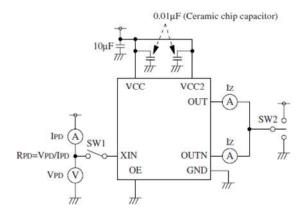
ORDERING GUIDE			
Temperature range	Standard non-military	Class H	Class K
-55°C to 125°C	VC5037A1	VC5037A1H	VC5037A1K
-55°C to 125°C	VC5037B1	VC5037B1H	VC5037B1K
-55°C to 125°C	VC5037B2	VC5037B2H	VC5037B2K
-55°C to 125°C	VC5037C1	VC5037C1H	VC5037C1K
-55°C to 125°C	VC5037C2	VC5037C2H	VC5037C2K
-55°C to 125°C	VC5037D1T	VC5037D1TH	VC5037D1TK
-55°C to 125°C	VC5037E1	VC5037E1H	VC5037E1K
	Versions without CC) cancellation circuit	
-55°C to 125°C	VC5037A1N	VC5037A1NH	VC5037A1NK
-55°C to 125°C	VC5037B1N	VC5037B1NH	VC5037B1NK
Plea	se contact sales for current ordering int	formation (price, delivery, order	quantities)
	Email: sales@vcar	nerica.com	
	Phone: 702-597-24	95	
	Facsimile: 702-920-84	05	

SWITCHING TIME MEASUREMENT WAVEFORM

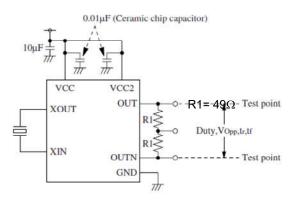

$$\begin{split} DUTY = t_W / t_{PER} \times 100 ~(\%) @ \mbox{ crossing point} \\ \Delta V_{OD} = |V_{OD}' - V_{OD}| \end{split}$$

*2. The OUT/OUTN output goes high impedance after the OE is fallen and then the output disable time "tOD" has elapsed.

*3. The normal output occurs after the OE is raised and then the output enable time "toE" has elapsed.



Measurement Circuit 1



Measurement Circuit 2

Measurement Circuit 3

- 1. Circuit wiring must be simply as short as possible or required characteristics may not be realized. Locate bypass capacitors directly across supply pins.
- 2. VC America recommends measurement of waveform parameters requires an oscilloscope and signal path (inclusive of probe/

Notices

VC America [VCA] reserve the right to make corrections, enhancements, improvements and other modifications to its components, products, and services [referred after as "products"] per JESD46 and to discontinue any product or service per JESD48. Purchasers and buyers are responsible for verifying such information is up-to-date and review all relevant information. All products are sold subject to VCA terms and condition of sale at time of order acknowledgement.

Information furnished by VCA is believed to be correct and reliable. However, no responsibility is assumed by VCA for its use, nor for any infringement of patents or other rights of third party.

No license is granted, express or implied or otherwise for or under any patent rights of VCA. Trademarks and registered trademarks are the property of their respective owners.

Only those VCA products which VCA has designated as military grade are manufactured, processed and intended for use in military/aerospace or environments. Buyer acknowledges and agrees that any military or aerospace use of VCA products which have NOT been so designated is solely and entirely at Buyer's risk, and that Buyer accepts and is solely responsible for compliance with all legal and regulatory requirements in connection for such use.

Products specified for operation –55°C to 125°C are military grade when supplied from processed and verified production lots meeting or exceeding the applicable requirements of Mil-PRF-55310 Class B and S or Mil-PRF-38534 Class H & K and Mil-PRF-38535, sans radiation. Determining the degree of radiation hardness of any product is the responsibility of the Buyer, unless such testing is contracted by Buyer with VCA.

VCA assumes no liability for applications assistance related to design or use of buyers' products. Buyers are responsible for their products and applications using VCA products. Buyer is solely responsible for verifying application and use, and that designs and design margins are adequate to meet end product requirements.

VCA does not warrant or represent any license, express or implied or otherwise, as being granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination of design, circuit, process, or machine in which VCA products are used. Information published by VCA regarding third-party products does not constitute a license to use such products. VCA does not warrant or provide any endorsement of use. Any license for use of such information is responsibility of Buyer.

Reproduction of this datasheet without alteration is permissible provided it's accompanied by all associated warranties, condition, limitation, and notices. VCA is not response or liable for such altered document.

Use of VCA products in FDA class III or comparable life-critical applications is not permissible unless authorized officers of the parties have executed an agreement specifically governing such use.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory, and safety-related requirements regarding its products, and any use of VCA'S products in its applications, notwithstanding any applications related information or support that may be provided by VCA.

For any such case where products in this document falls under export controls, ITAR, foreign exchange, and/or foreign trade control law or other applicable laws and regulations, approval of the export to be based on those laws and regulations are necessary. Buyers are requested and required to take all appropriate steps to obtain required licenses, permissions or approvals from the required government agencies.

Mailing address: 2654 W. Horizon Ridge Parkway Ste B5-119 Henderson, NV. 89052

