

VC5035 Series

CMOS output Oscillator ASIC 70 to 220 MHz 1.8V, 2.5V & 3.3V -55°C to 125° Operation

FEATURES

- Rugged , reliable, CMOS clock
- Single Chip 5x7mm solution
- Overtone or Fundamental crystal
- 3.3, 2.5, 1.8 volt supply (1.6 to 3.63V)
- Excellent startup from V_{DD} power-on
- Low Phase noise & jitter

BENEFITS

- Stable low power operation
- Small board Footprint

APPLICATIONS

- System clocks
- Where power management is needed
- Data and voice Communications
- Packages ranging from 5x7 to 2.5x2.0mm

DEFENSE, AEROSPACE and MEDICAL APPLICATIONS

- Controlled Baseline
- Single Fabrication Site
- Single Assembly/Test site
- Temperature Range –55°C to 125°C
- Extended Product Life-Cycle
- Extended Product-Change Notification
- Product Traceability

GENERAL DESCRIPTION

The VC5035 series set the standard for rugged and reliable high frequency CMOS oscillator ICs built in 5x7 and 5x3.2 mm ceramic packages. They support 70 MHz to 220MHz output operation for 3.3V and 2.5V operation using fundamental or overtone crystals and operate from 70 to 165MHz at 1.8 volts.

The devices are fabricated using a proprietary BiCMOS process and the oscillator circuit is a bipolar (Colpitts) design with built-in capacitors and feedback resistors. A unique startup circuit assures stable oscillation prior to clock output being enabled..

The VC5035 series is specified for –55°C to 125°C operation. For applications requiring processing to Mil-PRF-38534 or Mil-PRF-38535, refer to ordering guide.

BLOCK DIAGRAM (equivalent circuit)

SERIES CONFIGURATION

-55 °C to 125°C Operation	Voltage Range	Frequency Range (MHz)	Fundamental	Overtone
VC5035ALA		70 to 95	Yes	Yes
VC5035ALB	1.6V to 3.63V	95 to 125	Yes	Yes
VC5035ALC		125 to 165	Yes	Yes
VC5035ALD	2.25V to 3.63V	165 to 220	Yes	Yes

See page 6 for ordering IC processed to Mil-PRF-55310 Appendix B table B-I Class "B" or Mil-PRF-38534 Class H / K

TABLE OF CONTENTS

Section	Page
Physical Dimensions and Pad Layout	2
Pad Coordinates and Pin descriptions	2
Absolute Maximum ratings	3
Recommended Operating Conditions	3
Table III Electrical Characteristics (DC values)	4
Table III Electrical Characteristics (AC values)	5
Timing Chart / Switching waveforms	5
Functional Descriptions	6
Ordering Guide	6
Test measurement circuits	7-8
Design Values	9
Important Notice	10

PHYSICAL DIMENSIONS AND PAD LAYOUT

Chip Size	Micron	Mils
Chip length X	1080	42.6
Chip length Y	1320	51.2
Chip thickness	330	13.0
Pad size (all but test)	100x100	3.93x3.93
Test pad	80x80	3.14x3.14

VDD TEST Q (1080, 1320)7 6 5 Y DA5035 1 2 3 4 (0,0) INHN XIN XOUT VSS х Chip size: 1.08×1.32 mm

Chip size: 1.08×1.32 mm Chip thickness: 300 ± 30 µm PAD size: 100µm × 100µm (TEST: 80µm × 80µm) Chip base: V_{SS} potential

PAD COORDINATES AND PIN DESCRIPTIONS

Pad No.	Namo			Function		n. [µm]
Fau NO.	Name	1/0		Function	Х	Y
1	IHN	Ι	Output Stable con Power –	Output Stable control input. Oscillator stops when LOW. Power –saving pull-up resistor built-in.		135
2	XIN	Ι	Oscillator input	Crystal connection pins connect	461	135
3	XOUT	0	Oscillator output	Crystal to XIN and XOUT	734	135
4	VSS	-		(-) ground pin		130
5	Q	0	Output pin. Output fre	Output pin. Output frequency. High impedance in standby mode		1185
6	TEST	Ι	IC test pin. Leave open circuit for normal operation		494	1195
7	VCC	-		(+) supply voltage	135	1185

ABSOLUTE MAXIMUM RATINGS

Vss=0

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage range	V_{DD}	Between V_{DD} and V_{SS}	0.5 to +5.0	V
Input voltage range	V _{IN}	Input pins	V_{SS} -0.5 to V_{CC} +0.5	V
Output voltage range	V _{OUT}	Output pins	V_{SS} -0.5 to V_{CC} +0.5	V
Output current	I _{OUT}	Q pin	25	mA
Storage temperature range	T _{STG}	Chip form	-65 to +150	°C
Junction temperature	TJ	Mounted	+175	°C

^{*1} Parameter rating values must never exceed even for a moment or this product may suffer breakdown. Operation and characteristics are guaranteed only when the product is operated at recommended operating conditions.

^{*2} V_{DD} is a value of recommended operating conditions.

^{*3} Do not exceed absolute maximum ratings or device characteristics and reliability will be degraded.

^{*4}When stored in nitrogen or vacuum atmosphere applied to IC itself only (excluding packaging materials).

RECOMMENDED OPERATING CONDITIONS

V_{SS}=0V

 $C_{L} \leq 15 pF$

Parameter	Symbols	Condit	ion	MIN	MAX	Unit
			VC5035ALA	70	95	
	f _{osc}	$V_{DD} = 1.70$ to 3.63V	VC5035ALB	95	125	
Oscillator frequency * ⁵		02001 (1001	VC5035ALC	125	165	MHz
		V _{DD} = 2.25 to 3.63V CLOUT <15pF	VC5035ALD	VC5035ALD 165 220 VC5035ALA		
Operating supply voltage	V_{DD}	Between V_{DD} and V_{SS}^{*6} Input pins	VC5035ALA VC5035ALB VC5035ALC	1.60	3.63	V
			VC5035ALD	2.25	3.63	V
Input voltage	V _{IN}			V_{SS}	V _{DD}	V
Operating temperature	T _{OP}			-55	+125	С°
Output load capacitance	CL	Q output		-	15	pF

TABLE III Electrical Characteristics (DC Tests)

 V_{DD} =1.60V to 3.63V, V_{SS} = 0V, T = -55°C to 125°C unless otherwise noted.

Demonstern	0. makes l	O a ra ditti	Rating		Unit	
Parameter	n*1 Symbol	Conditi	on	Min	Max	Unit
		VC5035ALA,	V _{DD} = 1.6 to 2.0V	-	19	mA
		F _{OUT} = 95 MHz Measurement cct 1,	V_{DD} = 2.25 to 2.75V	-	26	mA
		INHN=open, CL=15pF	$V_{\text{DD}}\text{=}2.75$ to 3.63V	-	33	mA
Current Consumption* ¹		VC5035ALB,	V_{DD} = 1.6 to 2.0V	-	27	mA
		F _{OUT} = 125 MHz Measurement cct 1.	$V_{\text{DD}}\text{=}2.25$ to 2.75V		36	mA
		INHN=open, CL=15pF	$V_{\text{DD}}\text{=}2.75$ to 3.63V	-	46	mA
	IDD	VC5035ALC, F _{out} = 165 MHz Measurement cct 1, INHN=open, CL=15pF	V_{DD} = 1.6 to 2.0V	-	37	mA
			$V_{\text{DD}}\text{=}2.25$ to 2.75V		51	mA
			V _{DD} = 2.75 to 3.63V	-	65	mA
		VC5035ALD, F _{OUT} = 220 MHz Measurement cct 1, INHN=open, CL=15pF	V_{DD} = 2.25 to 2.75V	-	58	mA
			V _{DD} = 2.75 to 3.63V	-	73	mA
Standby Current	I _{STB}	Measurement cct 1, INHN	=LOW	-	10	μA
HIGH-level output voltage	V _{OH}	Q:Measurement cct 3, I _{OH} :	=- 8mA	V _{DD} -0.4	-	V
LOW-level output voltage	V _{OL}	Q:Measurement cct 3, I _{OL} =	= 8mA	-	0.4	V
Output lookago ourront	I _{ZH}	Q:Measurement cct 5,	$V_{OH} = V_{DD}$	-	10	μA
Output leakage current	I _{ZL}	INHN = LOW	$V_{OL} = V_{SS}$	-	10	μA
HIGH-level input voltage	V _{IH}	INHN, Measurement cct 4	INHN, Measurement cct 4		-	V
LOW-level input voltage	VIL	INHN, Measurement cct 4		-	$0.3V_{\text{DD}}$	V
	R _{PU1}	Measurement cct 6	INHN=0	0.4	4	MΩ
nan na puli-up resistance	R _{PU2}		INHN=0.7 x V _{DD}	30	150	kΩ

^{*1.} The operating current consumption includes the output load of CL = 15pF capacitance.

^{*1} The consumption current $I_{DD}(CL_{OUT})$ with a load capacitance (CL_{OUT}) connected to the Q pin is given by the following equation, where I_{DD} is the no-load consumption current and f_{OUT} is the output frequency (MHz).

 $I_{DD}(CL_{OUT})$ [mA] = I_{DD} [mA] + CL_{OUT} [pF] x V_{DD} [V] x f_{OUT} [MHz] x 10⁻³

sales@vcamerica.com www.vcamerica.com

TABLE III Electrical Characteristics (AC Tests)

Devementer	Cumple of	Condition			Rating	
Parameter	Symbol	Condition		Min	Max	Unit
Output rise time	tr1	Measurement cct 1 C_L =15pF 0.1V _{DD} to 0.9 V _{DD}	V _{DD} = 2.25 to 3.63V	Rating Unit Min Max Unit V_{DD} = 2.25 to 3.63V - 2.0 ns V_{DD} = 1.6 to 2.25V - 2.5 ns $/_{DD}$ = 2.25 to 3.63V - 2 ns V_{DD} = 1.6 to 2.25V - 2.5 ns V_{DD} = 1.6 to 2.25V - 2.5 ns V_{DD} = 1.6 to 2.25V 45 55 % V_{DD} = 1.6 to 2.25V 40 60 % V_{DD} = 1.6 to 2.25V 40 60 % V_{DD} = 1.6 to 2.25V 2 ms ms	ns	
Output lise time	tr2 Measurement cct 1 $C_L=15pF$ $0.2V_{DD}$ to $0.8 V_{DD}$ $V_{DD}=1.6$ to $2.25V$ - tf1 Measurement cct 1 $C_L=15pF$, $0.1V_{DD}$ to $0.9 V_{DD}$ $V_{DD}=2.25$ to $3.63V$ - Measurement cct 1 $C_L=15pF$, $0.1V_{DD}$ to $0.9 V_{DD}$ $V_{DD}=2.25$ to $3.63V$ -	2.5	ns			
Output fall time	tf1 Measurement cct 1 $C_L=15pF$, $0.1V_{DD}$ to $0.9 V_{DD}$ $V_{DD}=2.25$ to $3.63V$ tf2 Measurement cct 1 $C_L=15pF$, $0.2V_{DD}$ to $0.8 V_{DD}$ $V_{DD}=1.6$ to $2.25V$	V _{DD} = 2.25 to 3.63V	-	2	ns	
Output fall time	tf2	$\begin{array}{l} \text{Measurement cct 1 } C_{\text{L}} = 15 \text{pF}, \\ 0.2 \text{V}_{\text{DD}} \text{ to } 0.8 \text{ V}_{\text{DD}} \end{array}$	V _{DD} =1.6 to 2.25V	-	2.5	ns
	Duty	Measurement cct 1 $C_L = 15 \text{ pF}$	V _{DD} = 2.25 to 3.63V	45	55	%
	Duty	Ta = 25°C	V _{DD} =1.6 to 2.25V	40	60	%
Output enable delay time ^{*1}	T _{OE}	Measurement cct 2, Ta = 25°C, $C_L \le 15 \text{ pF}$, F _{IN} =1Hz INHN=0 to V _{DD} volts		-	2	ms
Output Disable delay	T _{OD}	Measurement cct 2, Ta = 25°C,	C _L ≤ 15 pF, F _{IN} =1Hz	-	200	ns

 V_{DD} =1.60 to 3.63V, V_{SS} = 0V, T_{OP} = -55°C to 125°C unless otherwise noted.

*1 Oscillator stop function is built-in and when INHN goes LOW, oscillation stops. When INHN goes HIGH, normal output is resumed after the oscillator start-up time has elapsed.

TIMING CHART

Figure 1. Output switching waveform

FUNCTIONAL DESCRIPTION

Standby Function

When INHN logic state is LOW (= = V_{SS}), oscillation stops and output state is high impedance (standby mode).

INHN	Q	Oscillator
HIGH (or open)	F _{OUT}	Normal Operation
LOW	High Impedance	Stopped

Power Saving Pull-up Resistor

The INHN pin pull-up resistance changes its value to R_{PU1} or R_{PU2} in response to the input level (High or Low). When INHN is tied to Low level, the pull-up resistance increases (R_{PU1}), thus reducing the current consumed.

When INHN is left open circuit or tied to High level, the pull-up resistance is smaller (R_{PU2}). In addition to changing INHN state to High, the lower pull-up resistance increases immunity from noise, keeping the oscillator in the high /On-state and working properly.

Oscillation Detector Function

The VC5035 series incorporates an oscillation detection circuit. The oscillation detection circuit disables the output until the oscillator circuit starts up, which avoids the problem where the oscillator does not start due to abnormal oscillation conditions, when power is applied or when the oscillator is restarted using INHN.

PACKING

IC are shipped as bare die / chip form and packed in 2" square waffle packs 400 chips per tray, nitrogen-purged and vacuum sealed, and labeled with:

Manufacturer Part number Lot code Wafer number [class K] Quantity

Devices processed to Mil-PRF-55310 Appendix B table B-I Class "B" or Mil-PRF=38534 Class H and K include qualification reports. Class K include SEM report when ordered. Variables Data may be specified. Certificate of Conformance / compliance is included with each order and shipment.

ORDERING GUIDE							
Frequency Range	Standard	Level B	Class H	Class K			
70 to 95 MHz	VC5035ALA	VC5035ALAB	VC5035ALAH	VC5035ALAK			
95 to 125MHz	VC503ALB	VC5035ALBB	VC5035ALBH	VC5035ALBK			
125 to 165MHz	VC5035ALC	VC5035ALCB	VC5035ALCH	VC5035LCK			
165 to 220 MHz VC5035ALD VC5035ALDB VC5035ALDH VC5035ALDK							
Please contact sales for current ordering information (price, delivery, order quantities) Email: sales@vcamerica.com Phone: 702-597-2495							

sales@vcamerica.com www.vcamerica.com

Page 7 Copyright @ 2017, VC America Inc.

Measurement circuit 4

Measurement Parameter. VIH, VIL

VIH: The Voltage during transition from VSS to VDD that changes output state.

VIL: The Voltage during transition from VDD to VSS that changes output state INHN has oscillation stop function

Measurement circuit 5

Measurement circuit 6 Measurement Parameter. RPU1, RPU2

DESIGN VALUES

The following design values are monitored by measuring test pattern on wafer, (not tested on each device).

Parameter	Symbol	Device Version	MIN	TYP	MAX	Unit
	C _G		3.2	4.0	4.8	pF
	CD	VC5035ALA	3.2	4.0	4.8	
	C _G		3.2	4.0	4.8	
Oscillator Capacitance:	CD	VC5035ALB	3.2	4.0	4.8	
parasitic capacitance	C _G		1.6	2.0	2.4	
paraolito capacitarioo.	C _D	VC5035ALC	1.6	2.0	2.4	
	C _G	VC5035ALD	0.8	1.0	1.2	
	CD		0.8	1.0	1.2	

This portion of page intentionally left blank.

NOTICES

VC America [VCA] reserve the right to make corrections, enhancements, improvements and other modifications to its components, products, and services [referred after as "products"] per JESD46 and to discontinue any product or service per JESD48. Purchasers and buyers are responsible for verifying such information is up-to-date and review all relevant information. All products are sold subject to VCA terms and condition of sale at time of order acknowledgement.

Information furnished by VCA is believed to be correct and reliable. However, no responsibility is assumed by VCA for its use, nor for any infringement of patents or other rights of third party.

No license is granted, express or implied or otherwise for or under any patent rights of VCA. Trademarks and registered trademarks are the property of their respective owners.

Only those VCA products which VCA has designated as military grade are manufactured, processed and intended for use in military / aerospace or environments. Buyer acknowledges and agrees that any military or aerospace use of VCA products which have NOT been so designated is solely and entirely at Buyer's risk, and that Buyer accepts and is solely responsible for compliance with all legal and regulatory requirements in connection for such use.

Products specified for operation -55°C to 125°C are military grade when supplied from processed and verified production lots meeting or exceeding the applicable requirements of Mil-PRF-55310 Class B and S or Mil-PRF-38534 Class H & K and Mil-PRF-38535, excluding radiation testing. Determining the degree of radiation hardness of any product is the responsibility of the Buyer, unless such testing is contracted by Buyer with VCA.

VCA assumes no liability for applications assistance related to design or use of buyers' products. Buyers are responsible for their products and applications using VCA products. Buyer is solely responsible for verifying application and use, and that designs and design margins are adequate to meet end product requirements.

VCA does not warrant or represent any license, express or implied or otherwise, as being granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination of design, circuit, process, or machine in which VCA products are used. Information published by VCA regarding third-party products does not constitute a license to use such products. VCA does not warrant or provide any endorsement of use. Any license for use of such information is responsibility of Buyer.

Reproduction of this datasheet without alteration is permissible provided it is accompanied by all associated warranties, condition, limitation, and notices. VCA is not response or liable for such altered document.

Use of VCA products in FDA class III or comparable life-critical applications is not permissible unless authorized officers of the parties have executed an agreement specifically governing such use.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory, and safetyrelated requirements regarding its products, and any use of VCA'S products in its applications, notwithstanding any applications related information or support that may be provided by VCA.

For any such case where products in this document falls under export controls, ITAR, foreign exchange, and / or foreign trade control law or other applicable laws and regulations, approval of the export to be based on those laws and regulations are necessary. Buyers are requested and required to take all appropriate steps to obtain required licenses, permissions or approvals from the required government agencies.

Copyright @ 2014-2017 VC America

DN: 2017-08-5035HC.1

Mailing address: 2654 W. Horizon Ridge Parkway Ste B5-119 Henderson, NV. 89052

sales@vcamerica.com www.vcamerica.com

