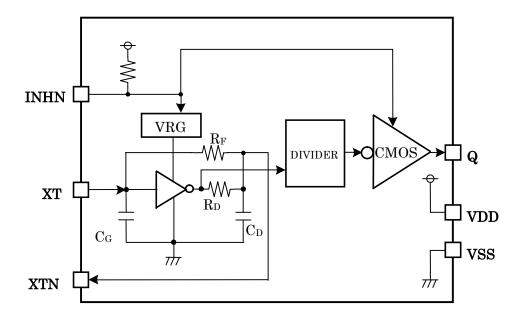
#### 1. OVERVIEW


The CF7052Hxx/WF7052Hxx series are crystal oscillator module CMOS ICs for +125°C operation. They support 20MHz to 80MHz fundamental-frequency, and have an oscillator amplifier, voltage regulator circuit and output buffer.

The oscillator circuit stage has a voltage regulator drive, reducing current consumption and frequency deviation due to fluctuations in supply voltage.

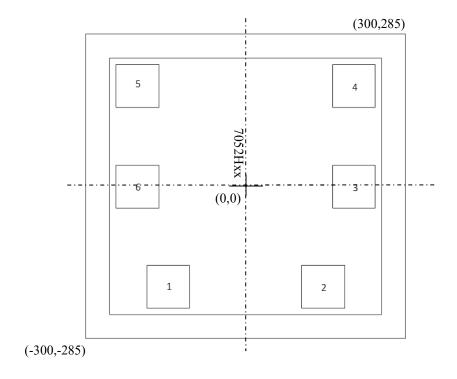
# 2. FEATURES

- Operating supply voltage: 1.60V to 3.63V
- Recommended oscillation frequency (Fundamental-frequency): 20MHz to 60MHz (Hx1 to Hx5 ver.) 40MHz to 80MHz (HxP ver.)
- Low current consumption by regulated voltage circuit drive in oscillator circuit stage:
  - 1.6mA typ. @ Hx1 ver.  $f_{OSC}$ =48MHz,  $V_{DD}$ =3.3V, no load 2.3mA typ. @ HxP ver.  $f_{OSC}$ =80MHz,  $V_{DD}$ =3.3V, no load
- Operation temperature: -40 to +125°C
- Oscillator capacitors C<sub>G</sub>, C<sub>D</sub> built-in
- Output drive capability: ±4mA
- Output frequency: fosc (oscillator frequency), fosc/2, fosc/4, fosc/8, fosc/16
- Output 3-state function
- Low standby current (oscillator stopped, power saving pull-up resistor)
- Oscillation detection circuit built-in

### 3. BLOCK DIAGRAM






# 4. PAD DIMENSIONS

(1) Chip size\*1: X=0.60mm, Y=0.57mm

(2) Rear surface: V<sub>SS</sub> potential
 (3) Pad aperture size: 80um×80um

(4) Chip form

<sup>\*1:</sup> The chip size is the value measured between scribe line centers.



| Pad Dimensions Unit [ |        |        |                       |      |      |  |  |  |
|-----------------------|--------|--------|-----------------------|------|------|--|--|--|
| No.                   | X      | Y      | Version name column 2 |      |      |  |  |  |
| NO.                   | Λ      | ĭ      | A                     | В    | C    |  |  |  |
| 1                     | -145.2 | -188.0 | XT                    | XTN  | XT   |  |  |  |
| 2                     | 145.2  | -188.0 | XTN                   | XT   | XTN  |  |  |  |
| 3                     | 203.0  | -0.6   | VDD                   | INHN | VSS  |  |  |  |
| 4                     | 203.0  | 188.0  | Q                     | VSS  | Q    |  |  |  |
| 5                     | -203.0 | 188.0  | VSS                   | Q    | VDD  |  |  |  |
| 6                     | -203.0 | -0.6   | INHN                  | VDD  | INHN |  |  |  |

## 5. PAD DESCRIPTION

| Symbol | I/O | Name                                     | Description                                                                                                               |
|--------|-----|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| XT     | I   | Oscillator input pin                     | Crystal element connection pins                                                                                           |
| XTN    | О   | Oscillator output pin                    | Connect crystal between XT and XTN pins.                                                                                  |
| VDD    | -   | (+) supply pin                           |                                                                                                                           |
| Q      | О   | Output pin                               | <ul> <li>fosc, fosc/2, fosc/4, fosc/8, fosc/16 frequency output</li> <li>High-impedance output in standby mode</li> </ul> |
| VSS    | -   | (-) supply pin                           |                                                                                                                           |
| INHN   | I   | Output state control input (Inhibit) pin | <ul><li>Oscillator is stopped in standby mode when LOW.</li><li>Pull-up resistor built-in</li></ul>                       |

I: input pin, O: output pin, fosc: oscillator frequency

#### 6. 7052Hxx SERIES CONFIGURATION

| Version name                                        | Oscillator capacitance (pF) *3                           |       | Output stage |                      |                                                                                           | Standby state     |                       |        |
|-----------------------------------------------------|----------------------------------------------------------|-------|--------------|----------------------|-------------------------------------------------------------------------------------------|-------------------|-----------------------|--------|
| *1                                                  | *2                                                       | $C_G$ | $C_D$        | Output<br>duty level | Frequency                                                                                 | Output<br>current | Oscillator<br>stopped | Output |
| 7052Hx1<br>7052Hx2<br>7052Hx3<br>7052Hx4<br>7052Hx5 | Fundamental-<br>frequency oscillation:<br>20MHz to 60MHz | 3.5   | 5.5          | $1/2 V_{DD}$         | f <sub>OSC</sub> /2<br>f <sub>OSC</sub> /4<br>f <sub>OSC</sub> /8<br>f <sub>OSC</sub> /16 | ±4mA              | Yes                   | Hi-Z   |
| 7052HxP                                             | Fundamental-<br>frequency oscillation:<br>40MHz to 80MHz | 1.0   | 2.0          |                      | $ m f_{OSC}$                                                                              |                   |                       |        |

<sup>\*1:</sup> Wafer form devices have designation WF7052Hxx and chip form devices have designation CF7052Hxx

#### 6.1. Version Name Format

The version name comprises 2 alphanumeric characters [A-C, P, 1-5].

The meaning of the character in each figure is:

(1) Pad layout designator

A :Flip Chip Bonding

B :Wire Bonding Type I

C: Wire Bonding Type II

7052H[

Pad layout designator

Oscillation frequency range, Divider ratio (2) Oscillation frequency range, Divider ratio

1 :20MHz to 60MHz, fosc output

2 :20MHz to 60MHz,  $f_{OSC}$  /2 output

3 :20MHz to 60MHz,  $f_{OSC}$  /4 output

4~:20MHz to  $60MHz,\,f_{OSC}\,/8~output$ 

5 :20MHz to 60MHz,  $f_{OSC}$  /16 output

 $P\ \ :40MHz\ to\ 80MHz,\ f_{OSC}\ output$ 



<sup>\*2:</sup> The recommended oscillation frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. The oscillation frequency range is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

<sup>\*3:</sup> Excluding parasitic capacitance

# 7. ABSOLUTE MAXIMUM RATINGS

 $V_{SS}=0V$ 

| Parameter                 | Symbol            | Conditions                  | Rating                       | Unit | Remarks |
|---------------------------|-------------------|-----------------------------|------------------------------|------|---------|
| Supply voltage range      | $V_{DD}$          | Voltage between VDD and VSS | -0.3 to +4.5                 | V    | *1      |
| Input voltage range 1     | V <sub>IN1</sub>  | INHN pin                    | -0.3 to V <sub>DD</sub> +0.3 | V    | *1,*2   |
| Input voltage range 2     | V <sub>IN2</sub>  | XT pin                      | -0.3 ~ +2.5                  | V    | *1,*2   |
| Output voltage range 1    | V <sub>OUT1</sub> | Output pin                  | -0.3 to V <sub>DD</sub> +0.3 | V    | *1,*2   |
| Output voltage range 2    | $V_{OUT2}$        | XTN pin                     | -0.3 ~ +2.5                  | V    | *1,*2   |
| Output current            | I <sub>OUT</sub>  | Q output                    | ±20                          | mA   | *3      |
| Junction temperature      | $T_{j}$           |                             | 150                          | °C   | *3      |
| Storage temperature range | $T_{STG}$         | Chip form wafer form        | -55 to +150                  | °C   | *4      |

<sup>\*1:</sup> Absolute maximum ratings are the values that must never exceed even for a moment. This product may suffer breakdown if any one of these parameter ratings is exceeded. Operation and characteristics are guaranteed only when the product is operated at recommended supply voltage range.

### 8. RECOMMENDED OPERATING CONDITIONS

 $V_{SS}=0V$ 

| Parameter                | Symbol          | Conditions                          |                                | MIN             | TYP | MAX      | Unit |  |
|--------------------------|-----------------|-------------------------------------|--------------------------------|-----------------|-----|----------|------|--|
| O '11 4 C*1              | £               | V =1.6 to 2.62V                     | Hx1~Hx5 ver.                   | 20              |     | 60       | МП   |  |
| Oscillator frequency *1  | $f_{OSC}$       | $V_{DD}$ =1.6 to 3.63V              | HxP ver.                       | 40              |     | 80       | MHz  |  |
| 0.4                      | r               | V <sub>DD</sub> =1.6 to 3.63V,      | Hx1∼Hx5 ver.                   | 1.25            |     | 60       |      |  |
| Output frequency         | $ m f_{OUT}$    | $C_{\text{LOUT}} \leq 15 \text{pF}$ | HxP ver.                       | 40              |     | 80       | MHz  |  |
| Operating supply voltage | $V_{DD}$        | Voltage between V                   | Voltage between VDD and VSS *2 |                 |     | 3.63     | V    |  |
| Input voltage            | V <sub>IN</sub> | Input pins                          |                                | V <sub>SS</sub> |     | $V_{DD}$ | V    |  |
| Operating temperature    | Ta              |                                     |                                | -40             |     | +125     | °C   |  |
| Output load capacitance  | $C_{LOUT}$      | Q output                            |                                |                 | 15  | pF       |      |  |

<sup>\*1:</sup> The oscillation frequency is a yardstick value and the oscillation frequency range is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

- \*2: For stable operation of this product, please mount ceramic chip capacitor that is more than 0.01uF between VDD and VSS in close proximity to IC (within 3mm). Wiring pattern between IC and capacitor should be as thick as possible.
- \* Since it may influence the reliability if it is used out of the recommended operating conditions range, this product should be used within this range.



<sup>\*2:</sup> V<sub>DD</sub> is a V<sub>DD</sub> value of recommended operating conditions.

<sup>\*3:</sup> Do not exceed the absolute maximum ratings. If they are exceeded, a characteristic and reliability will be degraded.

<sup>\*4:</sup> When stored alone in nitrogen or vacuum atmosphere.

## 9. ELECTRICAL CHARACTERISTICS

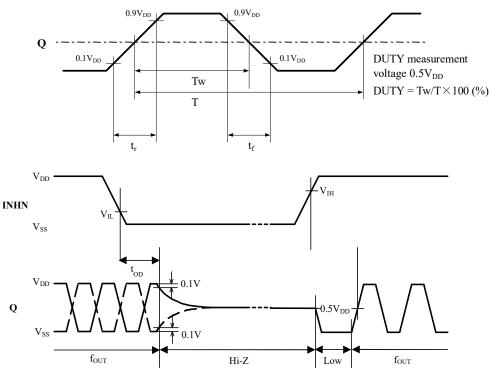
# 9.1. DC Characteristics

 $V_{DD}$  = 1.60 to 3.63V,  $V_{SS}$  = 0V,  $T_a$  = -40 to +125°C unless otherwise noted

| D /                                  | C 1 1                  | V DD = 1.00 to 3.03                             |                                               | 01, 1a 10 to          |             |          |             |      |
|--------------------------------------|------------------------|-------------------------------------------------|-----------------------------------------------|-----------------------|-------------|----------|-------------|------|
| Parameter                            | Symbol                 | Condit                                          | ions                                          |                       | MIN         | TYP      | MAX         | Unit |
| Q pin<br>HIGH-level output voltage   | $V_{\mathrm{OH}}$      | measurement circuit 3, I <sub>OH</sub> =-4mA    |                                               | -0.4                  |             | $V_{DD}$ | V           |      |
| Q pin<br>LOW-level output voltage    | $V_{OL}$               | measurement circuit 3, I <sub>O</sub>           | <sub>L</sub> =4mA                             |                       | 0           |          | 0.4         | V    |
| INHN pin<br>HIGH-level input voltage | $V_{ m IH}$            | measurement circuit 4                           |                                               |                       | $0.7V_{DD}$ |          |             | V    |
| INHN pin<br>LOW-level input voltage  | $V_{ m IL}$            | measurement circuit 4                           |                                               |                       |             |          | $0.3V_{DD}$ | V    |
| Q pin<br>Output leakage current      | $I_Z$                  | measurement circuit 5, INHN=LOW                 |                                               | $Q=V_{DD}$ $Q=V_{SS}$ | -10         |          | 10          | μΑ   |
| Current consumption *1               | I <sub>DD1</sub> _3.3V | Measurement circuit 1,                          |                                               | V <sub>DD</sub> =3.3V |             | 1.6      | 2.8         |      |
| (Hx1 version: fundamental            | I <sub>DD1</sub> _2.5V | INHN=OPEN, no load,                             |                                               | V <sub>DD</sub> =2.5V |             | 1.0      | 1.8         | mA   |
| frequency output)                    | I <sub>DD1</sub> _1.8V | $f_{OSC}$ =48MHz, $f_{OUT}$ =48MH               | łz                                            | V <sub>DD</sub> =1.8V |             | 0.8      | 1.4         |      |
| Current consumption *1               | I <sub>DD2</sub> _3.3V | Measurement circuit 1,                          |                                               | $V_{DD}=3.3V$         |             | 1.3      | 2.4         |      |
| (Hx2 version: Divide-by-2            | I <sub>DD2</sub> _2.5V | INHN=OPEN, no load,                             |                                               | V <sub>DD</sub> =2.5V |             | 0.8      | 1.6         | mA   |
| frequency output)                    | I <sub>DD2</sub> _1.8V | $f_{OSC}$ =48MHz, $f_{OUT}$ =24MH               | łz                                            | V <sub>DD</sub> =1.8V |             | 0.6      | 1.2         |      |
| Current consumption *1               | I <sub>DD3</sub> _3.3V | Measurement circuit 1,                          |                                               | V <sub>DD</sub> =3.3V |             | 1.1      | 2.0         |      |
| (Hx3 version: Divide-by-4            | I <sub>DD3</sub> _2.5V | INHN=OPEN, no load,                             |                                               | V <sub>DD</sub> =2.5V |             | 0.7      | 1.4         | mA   |
| frequency output)                    | I <sub>DD3</sub> _1.8V | $f_{OSC}$ =48MHz, $f_{OUT}$ =12MH               | łz                                            | V <sub>DD</sub> =1.8V |             | 0.5      | 1.0         |      |
| Current consumption *1               | I <sub>DD4</sub> _3.3V | Measurement circuit 1,                          |                                               | V <sub>DD</sub> =3.3V |             | 1.0      | 2.0         |      |
| (Hx4 version: Divide-by-8            | I <sub>DD4</sub> _2.5V | INHN=OPEN, no load,                             |                                               | V <sub>DD</sub> =2.5V |             | 0.6      | 1.2         | mA   |
| frequency output)                    | I <sub>DD4</sub> _1.8V | f <sub>OSC</sub> =48MHz, f <sub>OUT</sub> =6MHz | Z                                             | V <sub>DD</sub> =1.8V |             | 0.5      | 1.0         |      |
| Current consumption *1               | I <sub>DD5</sub> _3.3V | Measurement circuit 1,                          |                                               | V <sub>DD</sub> =3.3V |             | 1.0      | 1.8         |      |
| (Hx5 version: Divide-by-16           | I <sub>DD5</sub> _2.5V | INHN=OPEN, no load,                             |                                               | V <sub>DD</sub> =2.5V |             | 0.6      | 1.2         | mA   |
| frequency output)                    | I <sub>DD5</sub> _1.8V | f <sub>OSC</sub> =48MHz, f <sub>OUT</sub> =3MHz | Z                                             | V <sub>DD</sub> =1.8V |             | 0.4      | 0.8         |      |
| Current consumption *1               | I <sub>DDP</sub> _3.3V | Measurement circuit 1,                          |                                               | V <sub>DD</sub> =3.3V |             | 2.3      | 4.8         |      |
| (HxP version: fundamental            | I <sub>DDP</sub> _2.5V | INHN=OPEN, no load,                             |                                               | V <sub>DD</sub> =2.5V |             | 1.6      | 3.4         | mA   |
| frequency output)                    | I <sub>DDP</sub> _1.8V | $f_{OSC}$ =80MHz, $f_{OUT}$ =80MH               | łz                                            | $V_{DD}=1.8V$         |             | 1.2      | 2.6         |      |
| C4 11                                | т                      | Measurement circuit 1,                          | T <sub>a</sub> =-40                           | 0 to +85°C            |             |          | 10          | μA   |
| Standby current                      | $I_{ST}$               | INHN=LOW                                        |                                               |                       |             |          | 20          | μA   |
| INHN pin                             | R <sub>PU1</sub>       | Measurement circuit 6                           |                                               |                       | 1           | 2        | 3           | ΜΩ   |
| pull-up resistance                   | R <sub>PU2</sub>       | Measurement circuit 6                           |                                               |                       | 50          | 100      | 200         | kΩ   |
| Oscillator<br>feedback resistance    | $R_{ m f}$             |                                                 |                                               |                       | 50          | 100      | 200         | kΩ   |
| Oscillator capacitance               | $C_{G}$                | Confirmed using monitor pattern on the wafer.   |                                               | on the wafer.         | 2.8         | 3.5      | 4.2         | г    |
| $(Hx1 \sim Hx5 \text{ ver.})$        | $C_D$                  | Design value, excluding p                       | 1                                             |                       | 4.4         | 5.5      | 6.6         | pF   |
| Oscillator capacitance               | $C_G$                  | Confirmed using monitor                         | pattern                                       | on the wafer.         | 0.8         | 1.0      | 1.2         | P    |
| (HxP ver.)                           | $C_D$                  |                                                 | Design value, excluding parasitic capacitance |                       | 1.6         | 2.0      | 2.4         | pF   |

<sup>\*1:</sup> The consumption current  $I_{DD}(C_{LOUT})$  with a load capacitance  $(C_{LOUT})$  connected to the Q pin is given by the following equation, where  $I_{DD}$  is the no-load consumption current and  $f_{OUT}$  is the output frequency.

 $I_{DD}(C_{LOUT})[mA] = I_{DD}[mA] + C_{LOUT}[pF] \times V_{DD}[V] \times f_{OUT}[MHz] \cdot 10^{-3}$ 




### 9.2. AC Characteristics

 $V_{DD}$  = 1.60 to 3.63V,  $V_{SS}$  = 0V,  $T_a$  = -40 to +125°C unless otherwise noted

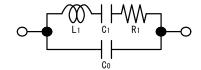
|                                    |                 | 100 to 5.05 1, 135 0 1, 1a                                                                               |    |     |     |      |
|------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------|----|-----|-----|------|
| Parameter                          | Symbol          | Conditions                                                                                               |    | TYP | MAX | Unit |
| Q pin Output rise time             | $t_{r1}$        | Measurement circuit 1, $C_{LOUT}$ =15pF,<br>0.1 $V_{DD} \rightarrow 0.9V_{DD}$ , $V_{DD}$ =2.25 to 3.63V |    | 1.4 | 5.0 | ***  |
| (Hx1 $\sim$ Hx5 ver.)              | $t_{r2}$        | Measurement circuit 1, $C_{LOUT}$ =15pF,<br>0.1 $V_{DD} \rightarrow 0.9V_{DD}$ , $V_{DD}$ =1.60 to 2.25V |    | 2.6 | 6.0 | ns   |
| Q pin                              | $t_{\rm fl}$    | Measurement circuit 1, $C_{LOUT}$ =15pF,<br>0.9 $V_{DD} \rightarrow 0.1V_{DD}$ , $V_{DD}$ =2.25 to 3.63V |    | 1.4 | 5.0 |      |
| Output fall time (Hx1~Hx5 ver.)    | $t_{f2}$        | Measurement circuit 1, $C_{LOUT}$ =15pF,<br>0.9 $V_{DD} \rightarrow 0.1V_{DD}$ , $V_{DD}$ =1.60 to 2.25V |    | 2.6 | 6.0 | ns   |
| Q pin                              | t <sub>r1</sub> | Measurement circuit 1, $C_{LOUT}$ =15pF,<br>0.1 $V_{DD} \rightarrow 0.9V_{DD}$ , $V_{DD}$ =2.25 to 3.63V |    | 1.0 | 3.5 |      |
| Output rise time (HxP ver.)        | $t_{r2}$        | Measurement circuit 1, $C_{LOUT}$ =15pF,<br>0.1 $V_{DD} \rightarrow 0.9V_{DD}$ , $V_{DD}$ =1.60 to 2.25V |    | 2.0 | 5.0 | ns   |
| Q pin                              | $t_{\rm fl}$    | Measurement circuit 1, $C_{LOUT}$ =15pF,<br>0.9 $V_{DD} \rightarrow 0.1V_{DD}$ , $V_{DD}$ =2.25 to 3.63V |    | 1.0 | 3.5 |      |
| Output fall time (HxP ver.)        | $t_{f2}$        | Measurement circuit 1, $C_{LOUT}$ =15pF,<br>0.9 $V_{DD} \rightarrow 0.1V_{DD}$ , $V_{DD}$ =1.60 to 2.25V |    | 2.0 | 5.0 | ns   |
| Q pin<br>Output duty cycle         | DUTY            | Measurement circuit 1, T <sub>a</sub> =25°C,<br>C <sub>LOUT</sub> =15pF, V <sub>DD</sub> =1.60 to 3.63 V | 45 | 50  | 55  | %    |
| Q pin<br>Output disable delay time | t <sub>OD</sub> | Measurement circuit 2,<br>T <sub>a</sub> =25°C, C <sub>LOUT</sub> ≤15pF                                  |    |     | 200 | ns   |

## TIMING DIAGRAMS

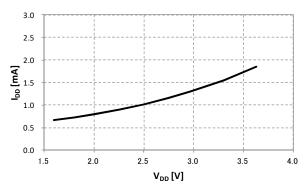


When INHN goes HIGH to LOW, the Q output becomes high impedance.

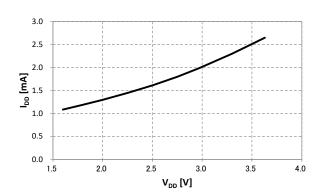
•When INHN goes LOW to HIGH, the Q output goes LOW once and then becomes normal output operation after having detected oscillation signals.




## 10. REFERENCE DATA (7052 TYPICAL CHARACTERISTICS)

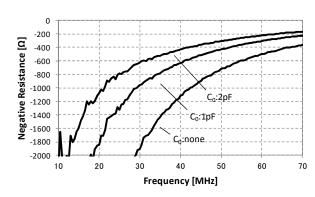

The following characteristics are measured using the crystal below. Note that the characteristics will vary with the crystal used.

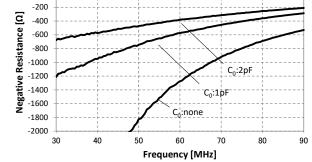
Crystal used for measurement


| Parameter    | 48MHz | 80MHz |  |  |  |  |  |
|--------------|-------|-------|--|--|--|--|--|
| C0(pF)       | 2.2   | 3.2   |  |  |  |  |  |
| $R1(\Omega)$ | 17.4  | 12.6  |  |  |  |  |  |



### 10.1. Current Consumption






7052HxP,  $f_{OSC}$ =80MHz,  $T_a$ =25°C, no load

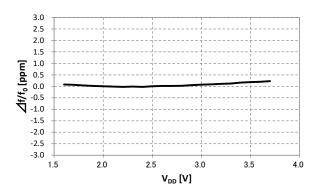
## 10.2. Negative Resistance



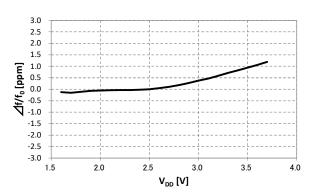


7052Hx1,  $V_{DD}$ =3.3V,  $T_a$ =25°C

7052HxP,  $V_{DD}$ =3.3V,  $T_a$ =25°C

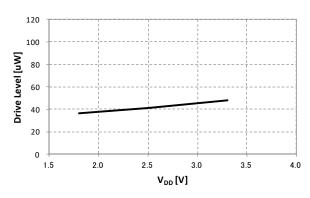

Measurement equipment: Agilent Impedance analyzer 4396B

The figures show the measurement result of the crystal equivalent circuit  $C_0$  capacitance, connected between the XT and XTN pins. They were performed with Agilent 4396B using the NPC test jig.

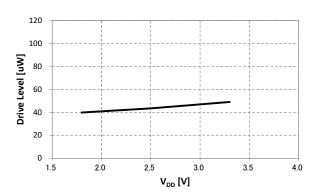

0

They may vary in a measurement jig, and measurement environment.

### 10.3. Frequency Deviation with Voltage

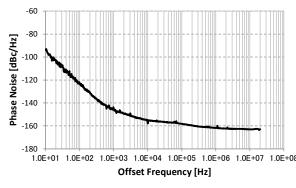



7052Hx1,  $f_{OSC}$ =48MHz,  $T_a$ =25°C, 2.5V std.

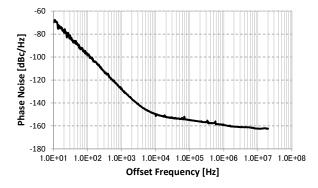



7052HxP,  $f_{OSC}$ =80MHz,  $T_a$ =25°C, 2.5V std.

### 10.4. Drive Level



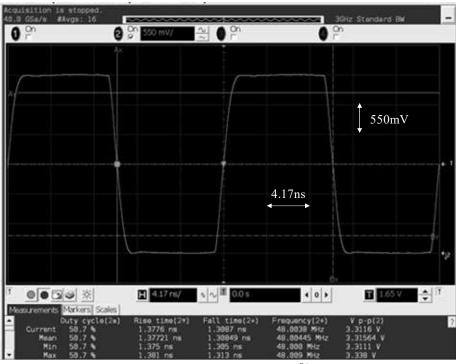

7052Hx1,  $f_{OSC}$ =48MHz,  $T_a$ =25°C



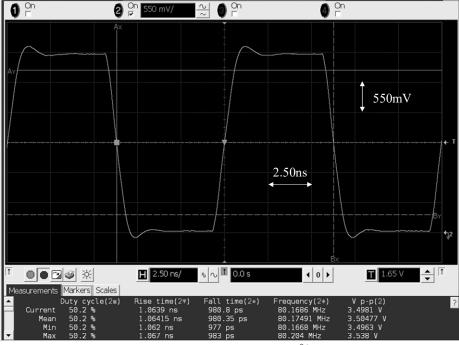

7052HxP,  $f_{OSC}$ =80MHz,  $T_a$ =25°C

## 10.5. Phase Noise




7052Hx1,  $f_{OSC}$ =48MHz,  $V_{DD}$ =3.3V,  $T_a$ =25°C




7052HxP,  $f_{OSC}$ =80MHz,  $V_{DD}$ =3.3V,  $T_a$ =25°C

Measurement equipment: Signal Source Analyzer Agilent E5052A

### 10.6. Output Waveform



7052Hx1,  $V_{DD}$ =3.3V,  $f_{OUT}$ =48MHz,  $C_{LOUT}$ =15pF,  $T_a$ =25°C



7052HxP,  $V_{DD}$ =3.3V,  $f_{OUT}$ =80MHz,  $C_{LOUT}$ =15pF,  $T_a$ =25 $^{\circ}$ C Measurement equipment: Oscilloscope Agilent DSO80604B

### 11. FUNCTIONAL DESCRIPTION

#### 11.1. INHN Function

Q output is stopped and becomes high impedance.

| INHN         | Q            | Oscillator |
|--------------|--------------|------------|
| HIGH or Open | $ m f_{OUT}$ | Operating  |
| LOW          | Hi-Z         | Stopped    |

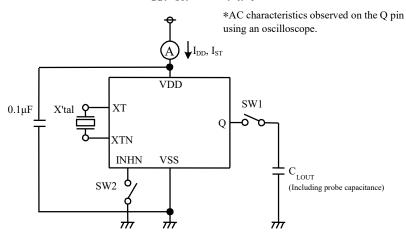
## 11.2. Power Saving Pull-up Resistor

The INHN pin pull-up resistance changes its value to  $R_{PU1}$  or  $R_{PU2}$  in response to the input level (HIGH or LOW).

When INHN is tied to LOW level, the pull-up resistance becomes large ( $R_{PU1}$ ), thus reducing the current consumed by the resistance. When INHN is left open circuit or tied to HIGH level, the pull-up resistance becomes small ( $R_{PU2}$ ), thus internal circuit of INHN becomes HIGH level.

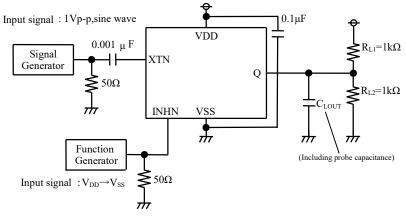
Consequently, the IC is less susceptible to the effects of noise, helping to avoid problems such as the output stopping suddenly.

#### 11.3. Oscillation Detection Function

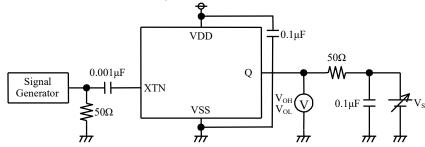

The 7052 series have an oscillation detection circuit.

The oscillation detection circuit disables the output until crystal oscillation becomes stable when oscillation circuit starts up. This function avoids the abnormal oscillation in the initial power up and in a reactivation by INHN.

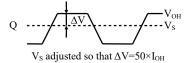


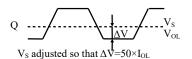

### 12. MEASUREMENT CIRCUITS

Measurement circuit 1 Parameters: I<sub>DD</sub>, I<sub>ST</sub>, DUTY, t<sub>r</sub>, t<sub>f</sub>

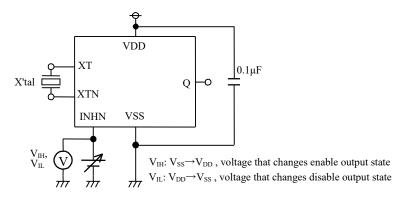



| Parameter                           | SW1       | SW2 |
|-------------------------------------|-----------|-----|
| $I_{DD}$                            | OFF       | OFF |
| $I_{ST}$                            | ON or OFF | ON  |
| DUTY,t <sub>r</sub> ,t <sub>f</sub> | ON        | OFF |

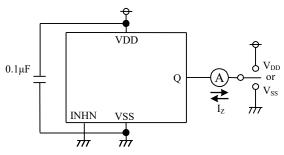

• Measurement circuit 2 Parameter: t<sub>OD</sub>



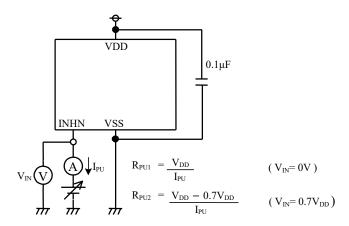

• Measurement circuit 3 Parameter: V<sub>OH</sub>, V<sub>OL</sub>



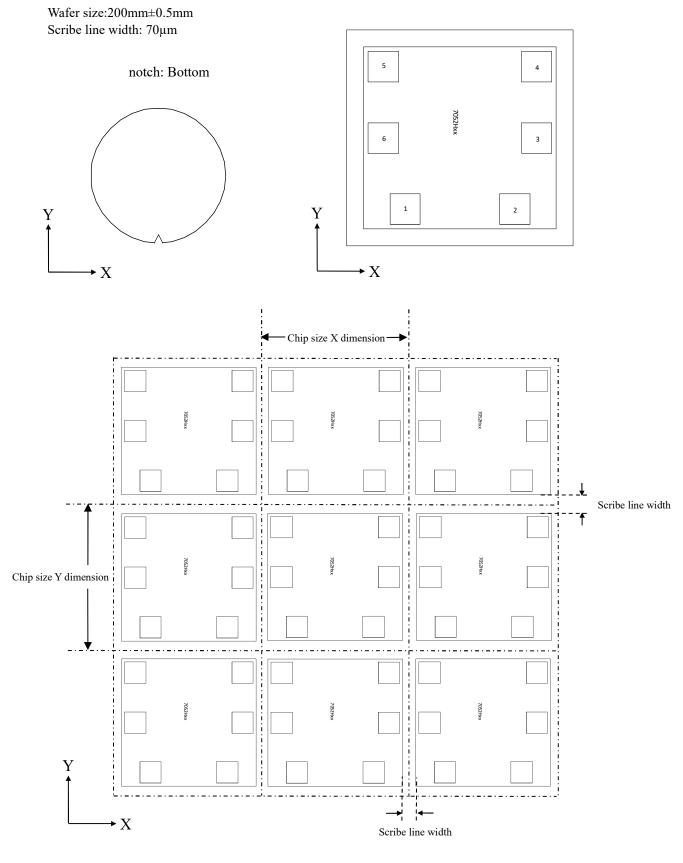

XTN input signal : 1Vp-p,sine wave





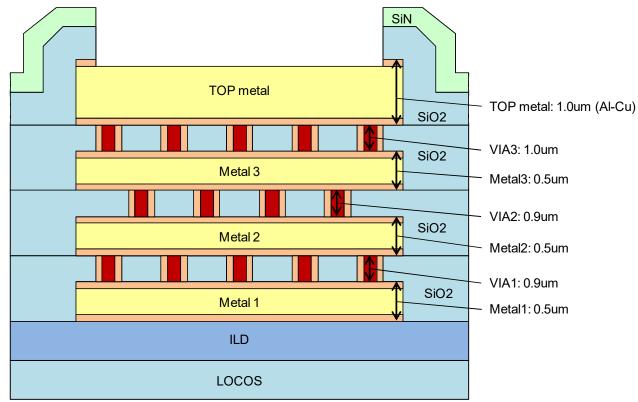


• Measurement circuit 4 Parameter: V<sub>IH</sub>, V<sub>IL</sub>




• Measurement circuit 5 Parameter: Iz

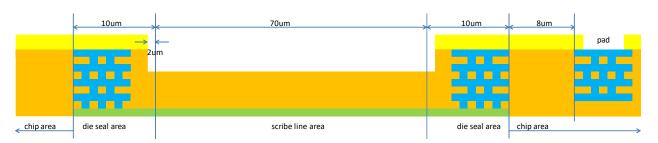


• Measurement circuit 6 Parameter: R<sub>PU1</sub>, R<sub>PU2</sub>




# 13. WAFER SURFACE ALIGNMENT DIAGRAM




#### 14. CROSS SECTION STRUCTURE

### 14.1. PAD Cross Section Structure



<sup>\*</sup>Film thicknesses of mention is a value in the designs as above and is not the actual value in the chip.

## 14.2. Seal Ring and Scribe Line Cross Section Structure



<sup>\*</sup>Widths of mention is a value in the designs as above and is not the actual value in the chip.

#### 15. USAGE AND PRECAUTIONS

This product is designed and manufactured to the generally accepted standards of reliability as expected for use in general electronic and electrical equipment, such as personal equipment, machine tools, and measurement equipment. This product is not designed and manufactured to be used in any other special equipment requiring extremely high level of reliability and safety, such as aerospace equipment, nuclear power control equipment, medical equipment, transportation equipment, disaster prevention equipment, security equipment.

If you wish to use this product in equipment requiring extremely high level of reliability, please contact our sales department or representative in advance.

In the event that this product is used in such equipment, please take scrupulous care and apply fail-safe techniques including redundancy and malfunction prevention in order to prevent damage to life, health, property, or infrastructure etc. in case there is some malfunction in the product.

Please pay your attention to the following points at time of using the products shown in this document.

- 1. The products shown in this document (hereinafter "Products") are designed and manufactured to the generally accepted standards of reliability as expected for use in general electronic and electrical equipment, such as personal equipment, machine tools and measurement equipment. The Products are not designed and manufactured to be used in any other special equipment requiring extremely high level of reliability and safety, such as aerospace equipment, nuclear power control equipment, medical equipment, transportation equipment, disaster prevention equipment, security equipment. The Products are not designed and manufactured to be used for the apparatus that exerts harmful influence on the human lives due to the defects, failure or malfunction of the Products.
  - If you wish to use the Products in that apparatus, please contact our sales section in advance.
  - In the event that the Products are used in such apparatus without our prior approval, we assume no responsibility whatsoever for any damages resulting from the use of that apparatus.
- 2. NPC reserves the right to change the specifications of the Products in order to improve the characteristics or reliability thereof.
- 3. The information described in this document is presented only as a guide for using the Products. No responsibility is assumed by us for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of the third parties. Then, we assume no responsibility whatsoever for any damages resulting from that infringements.
- 4. The constant of each circuit shown in this document is described as an example, and it is not guaranteed about its value of the mass production products.
- 5. In the case of that the Products in this document falls under the foreign exchange and foreign trade control law or other applicable laws and regulations, approval of the export to be based on those laws and regulations are necessary. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.



#### SEIKO NPC CORPORATION

2-9-4, Taito, Taito-ku, Tokyo 110-0016, Japan Telephone: +81-3-6747-5300 Facsimile: +81-3-6747-5303 http://www.npc.co.jp/ Email:sales@npc.co.jp

DE220062E 2022.8

