

OVERVIEW

The 5420xL series are LV-PECL output VCXO ICs that provide a wide frequency pulling range. They employ bipolar oscillator circuit and recently developed varicap diode fabrication process that provides a low phase noise characteristic and a wide frequency pulling range without any external components. Current consumption of the 5420xL series is reduced, it contributes to reduction of power consumption in applications.

FEATURES

- VCXO with recently developed varicap diode built-in
- Oscillator: Fundamental frequency oscillation
- Output frequency (f_{OUT}): 100 to 250MHz
- Operating supply voltage range: 2.97 to 3.63V
- Oscillator frequency range (for fundamental oscillation):

100 to 170MHz (BL version) 150 to 200MHz (CL version)

200 to 250MHz (DL version)

- -40 to +105°C operating temperature range
- Differential LV-PECL output
- Output enable (OE) active selectable function
 Selectable Hi-Active or Low-Active by bonding wire
- Output terminal on standby state

OUT: V_{OH}(DC), OUTN: V_{OL}(DC)

- Wide frequency pulling range (typ)
- ± 130 ppm@BL version, V_C=1.65 ± 1.65 V, f_{OUT}=122.88MHz (γ =330, C₀=1.6pF)
- ± 120 ppm@CL version, V_C=1.65 ± 1.65 V, f_{OUT}=155.52MHz (γ =330, C₀=1.5pF)
- * DL version: TBD
- Low phase noise (typ): -125dBc/Hz@BL version, 1kHz Offset, f_{OUT} =122.88MHz (γ =330, C_0 =1.6pF)
 - -155dBc/Hz@BL version, 10MHz Offset, f_{OUT}=122.88MHz
 - -125dBc/Hz@CL version, 1kHz Offset, f_{OUT} =155.52MHz (γ =330, C_0 =1.5pF)
 - -155dBc/Hz@CL version, 10MHz Offset, f_{OUT}=155.52MHz

APPLICATIONS

Base station, SONET/SDH, Ethernet, Fibre Channel, LTE

SERIES CONFIGURATION

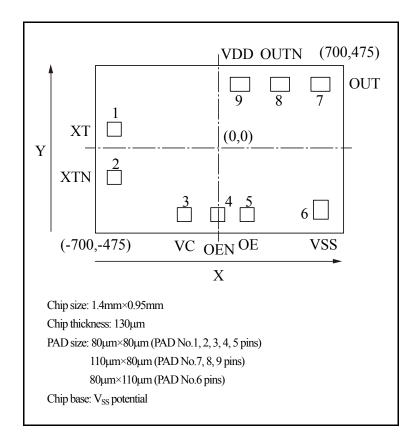
Version Name	Recommended operating frequency range $\left(f_{OSC}\right)^{*1}[MHz]$	Output frequency (f_{OUI})
5420BL	100MHz to 170MHz	f_{OSC}
5420CL	150MHz to 200MHz	f_{OSC}
(5420DL)*2	200MHz to 250MHz	f_{OSC}

^{*1.} The recommended oscillation frequency is a yardstick value derived from the resonator used for NPC characteristics authentication. However, the oscillation frequency range is not guaranteed. Specifically, the characteristics can vary greatly due to resonator characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

The recommended characteristics for the crystal element are:

$$R_1 < 20\Omega, C_0 < 1.5 pF$$

ORDERING INFORMATION

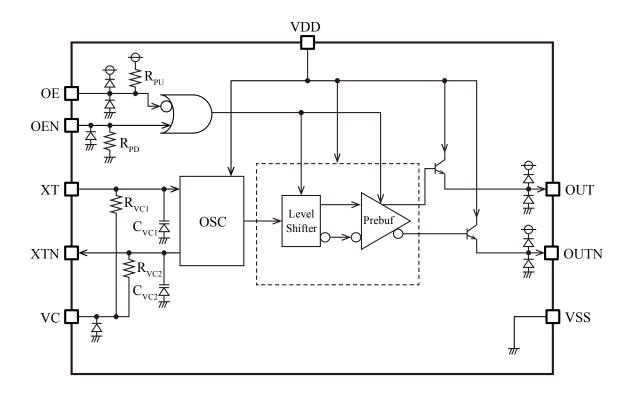

Device	Package	Version name
WF5420xL-4	Wafer form	WF5420□L-4 ↑ ↑
CF5420xL-4	Chip form	Form WF: Wafer form CF: Chip(Die) form Oscillation frequency range B:100~170MHz C:150~200MHz

^{*} DL version: TBD

^{*2.} The version name in parentheses has been developed.

PAD LAYOUT

(Unit: µm)



PIN DESCRIPTION and PAD COORDINATES

No.	Pin	I/O*1	Dogarintion	Pad Coordinate	es (Unit:µm)
NO.	riii	1/0	Description	X	Y
1	XT	I	Contain annuation nic	-595.0	116.0
2	XTN	О	Crystal connection pin	-595.0	-159.0
3	VC	I	Control voltage input pin	-200.2	-370.0
4	OEN	I	Output enable input pin (built-in pull-down resistor)	-12.4	-370.0
5	OE	I	Output enable input pin (built-in pull-up resistor)	156.2	-370.0
6	VSS	-	(-) ground	595.0	-355.0
7	OUT	О	Clock output pin (differential output)	554.1	370.0
8	OUTN	О	Clock output pin (differential reversing output)	324.3	370.0
9	VDD	-	(+) supply voltage	99.5	370.0

^{*1.}I: input, O: output

BLOCK DIAGRAM

The CF5420xL/WF5420xL incorporated standard PECL output schemes, which are un-terminated emitters.

SPECIFICATIONS

Absolute Maximum Ratings

 $V_{SS}=0V$

Parameter	Symbol	Condition	Rating	Unit
Supply voltage range*1	V_{DD}	VDD pins	-0.3 to +5.0	V
Input voltage range*1*2	V_{IN}	XT, OE, OEN, VC pins	-0.3 to $V_{DD} + 0.3$	V
Output voltage range*1*2	V _{OUT}	XTN, OUT, OUTN pins	-0.3 to V _{DD} +0.3	V
Junction temperature*3	T_j		+125	°C
Storage temperature range*4	T _{STG}	Wafer, Chip form	-55 to +125	°C

^{*1.} This parameter rating is the values that must never exceed even for a moment. This product may suffer breakdown if this parameter rating is exceeded. Operation and characteristics are guaranteed only when the product is operated at recommended operating conditions.

Recommended Operating Conditions

 $V_{SS}=0V$

D			Rating			T
Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Operating supply voltage	V_{DD}	Between VDD and VSS pins*2	2.97	3.3	3.63	V
Input voltage	V _{IN}	OE, OEN, VC pins	0	-	V_{DD}	V
Operating temperature	Ta		-40	-	+105	°C
Output load	R_{L}	Terminated to V _{DD} -2V	49.5	50.0	50.5	Ω
		5420BL	100	-	170	MHz
Oscillator frequency range*1	f_{OSC}	5420CL	150	-	200	
		5420DL	200	-	250	
		5420BL	100	-	170	
Output frequency range	f_{OUT}	5420CL	150	-	200	MHz
		5420DL	200	-	250	

^{*1.} The oscillation frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillation frequency range is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

Note. Since it may influence the reliability if it is used out of range of recommended operating conditions, this product should be used within this range.

 $^{*2.} V_{DD}$ is a V_{DD} value of recommended operating conditions.

^{*3.} Do not exceed the absolute maximum ratings. If they are exceeded, a characteristic and reliability will be degraded.

^{*4.} When stored in nitrogen or vacuum atmosphere applied to IC itself only (excluding packaging materials).

^{*2.} Mount a ceramic chip capacitor that is larger than 0.01µF proximal to IC (within approximately 3mm) between VDD and VSS in order to obtain stable operation of 5420xL series. In addition, the wiring pattern between IC and capacitor should be as wide as possible.

Electrical Characteristics BL version

 V_{DD} =2.97 to 3.63V, V_{C} =0.5 V_{DD} , V_{SS} =0V, T_{a} = -40 to +105°C unless otherwise noted.

Development	C11	Conditions			Rating		T14
Parameter	Symbol			MIN	TYP	MAX	Unit
Current consumption1	I_{DD1}	measurement circuit 1, terminated to VOE,OEN=Open	V _{DD} -2V,	-	49	60	mA
Current consumption2	I_{DD2}	measurement circuit 1, terminated to VOE=Low or OEN=High oscillator: operating, output: DC(V _{OH} .		-	49	60	mA
High-level output voltage	$ m V_{OH}$	measurement circuit 2,	T_a =0 to +105°C	V _{DD} -1.025	V _{DD} -0.950	V _{DD} -0.880	V
(DC level)	· On	OUT/OUTN pins	T_a =-40 to 0°C	V _{DD} -1.085	V _{DD} -1.005	-0.880	·
Low-level output voltage (DC level)	$ m V_{OL}$	measurement circuit 2, OUT/OUTN pins		V _{DD} -1.810	V _{DD} -1.700	V _{DD} -1.620	V
High-level input voltage	$V_{ m IH}$	measurement circuit 3, OE/OEN pins		$0.7V_{DD}$	-	-	V
Low-level input voltage	V_{IL}	measurement circuit 3, OE/OEN pins	measurement circuit 3, OE/OEN pins		-	$0.3V_{DD}$	V
Pull-up resistance	R_{PU}	measurement circuit 3, OE pin		50	100	200	kΩ
Pull-down resistance	R_{PD}	measurement circuit 3, OEN pin		50	100	200	kΩ
Oscillator block built-in	R _{VC1}	Between VC and XT, measurement c	ircuit 4	100	200	300	1-0
resistance*1	R _{VC2}	Between VC and XTN, measurement	circuit 4	100	200	300	kΩ
Input leakage resistance*1	R _{VIN}	VC pin, T _a =+25°C, measurement circ	ruit 5	10	-	-	ΜΩ
		Confirmed by acceptance sampling	V _C =0.3V	3.92	4.36	4.80	
	C _{VC1}	using wafer monitor pattern. Design value, excluding parasitic	V _C =1.65V	2.35	2.76	3.17	pF
Oscillator block built-in		capacitance	V _C =3.0V	1.20	1.50	1.80	
capacitance		Confirmed by acceptance sampling	V _C =0.3V	5.88	6.53	7.18	
	C _{VC2}	using wafer monitor pattern. Design value, excluding parasitic	V _C =1.65V	3.51	4.13	4.75	pF
		capacitance	V _C =3.0V	1.80	2.25	2.70	
Maximum modulation frequency	F_{M}	V_{DD} =3.3V, V_{C} =1.65V±1.65V,	-3dB frequency, T _a =+25°C, design value		50	-	kHz

^{*1.} These prescriptions indicate the following contents.

Oscillator block built-in resistance: Resistance between VC-XT or VC-XTN

Input leakage resistance: Resistance between VC-VDD or VC-VSS (DC characteristic)

Refer to "VC Terminal Input Impedance". (Page. 23)

CL version

 $V_{DD}\!\!=\!\!2.97 \text{ to } 3.63 \text{V, } V_{C}\!\!=\!\!0.5 V_{DD}, V_{SS}\!\!=\!\!0 \text{V, } T_{a}\!\!=\!-40 \text{ to } +\!105^{\circ}\text{C unless otherwise noted.}$

Downston	C11	C 14'			Rating		T1.*4
Parameter	Symbol	Conditions		MIN	TYP	MAX	Unit
Current consumption1	I_{DD1}	measurement circuit 1, terminated to VOE,OEN=Open	V _{DD} -2V,	-	50	60	mA
Current consumption2	I_{DD2}	measurement circuit 1, terminated to VOE=Low or OEN=High oscillator: operating, output: DC(VOH)		-	50	60	mA
High-level output voltage	$ m V_{OH}$	measurement circuit 2,	$T_a = 0 \text{ to } + 105^{\circ}\text{C}$	V _{DD} -1.025	V _{DD} -0.950	V _{DD} -0.880	V
(DC level)	*OH	OUT/OUTN pins	T_a =-40 to 0°C	V _{DD} -1.085	V _{DD} -1.005	-0.880	·
Low-level output voltage (DC level)	$ m V_{OL}$	measurement circuit 2, OUT/OUTN pins	·		V _{DD} -1.700	V _{DD} -1.620	V
High-level input voltage	$V_{ m IH}$	measurement circuit 3, OE/OEN pins		$0.7V_{DD}$	-	-	V
Low-level input voltage	V_{IL}	measurement circuit 3, OE/OEN pins		-	-	$0.3V_{DD}$	V
Pull-up resistance	R_{PU}	measurement circuit 3, OE pin		50	100	200	kΩ
Pull-down resistance	R_{PD}	measurement circuit 3, OEN pin		50	100	200	kΩ
Oscillator block built-in	R _{VC1}	Between VC and XT, measurement c	ircuit 4	100	200	300	1-0
resistance*1	R _{VC2}	Between VC and XTN, measurement	circuit 4	100	200	300	kΩ
Input leakage resistance*1	R _{VIN}	VC pin, T _a =+25°C, measurement circ	ruit 5	10	-	-	ΜΩ
		Confirmed by acceptance sampling	V _C =0.3V	3.92	4.36	4.80	
	C _{VC1} using wafer monitor pattern. Design value, excluding parasitic	V _C =1.65V	2.35	2.76	3.17	pF	
Oscillator block built-in		capacitance	V _C =3.0V	1.20	1.50	1.80	
capacitance		Confirmed by acceptance sampling	V _C =0.3V	5.88	6.53	7.18	
	C _{VC2}	using wafer monitor pattern. Design value, excluding parasitic	V _C =1.65V	3.51	4.13	4.75	pF
		capacitance	V _C =3.0V	1.80	2.25	2.70	
Maximum modulation frequency	F_{M}	-3dB frequency, T_a =+25°C, design value V_{DD} =3.3V, V_C =1.65V±1.65V, measurement circuit 8, Crystal : 155.52MHz		25	50	-	kHz

^{*1.} These prescriptions indicate the following contents.

Oscillator block built-in resistance: Resistance between VC-XT or VC-XTN

Input leakage resistance: Resistance between VC-VDD or VC-VSS (DC characteristic)

Refer to "VC Terminal Input Impedance" (Page. 23).

DL version (TBD)

 $V_{DD}\!\!=\!\!2.97$ to 3.63V, $V_{C}\!\!=\!\!0.5V_{DD}, V_{SS}\!\!=\!\!0V, T_{a}\!\!=\!-40$ to $+105^{\circ}C$ unless otherwise noted.

Development	C11	Conditions			Rating		T1.*4
Parameter	Symbol	Conditions		MIN	TYP	MAX	Unit
Current consumption1	I_{DD1}	measurement circuit 1, terminated to OE,OEN=Open	V _{DD} -2V,	-	(54)	(75)	mA
Current consumption2	I_{DD2}	measurement circuit 1, terminated to OE=Low or OEN=High oscillator: operating, output: DC(V _{OH}		-	(54)	(75)	mA
High-level output voltage	$ m V_{OH}$	measurement circuit 2,	$T_a=0 \text{ to } +105^{\circ}\text{C}$	V _{DD} -1.025	-0.950	-0.880	V
(DC level)	VOH	OUT/OUTN pins	T_a =-40 to 0°C	V _{DD} -1.085	V _{DD} -1.005	-0.880	·
Low-level output voltage (DC level)	$ m V_{OL}$	measurement circuit 2, OUT/OUTN pins		V _{DD} -1.810	V _{DD} -1.700	V _{DD} -1.620	V
High-level input voltage	$V_{ m IH}$	measurement circuit 3, OE/OEN pins		$0.7V_{DD}$	-	-	V
Low-level input voltage	V_{IL}	measurement circuit 3, OE/OEN pins		-	-	$0.3V_{DD}$	V
Pull-up resistance	R_{PU}	measurement circuit 3, OE pin		50	100	200	kΩ
Pull-down resistance	R_{PD}	measurement circuit 3, OEN pin	measurement circuit 3, OEN pin		100	200	kΩ
Oscillator block built-in	R _{VC1}	Between VC and XT, measurement of	circuit 4	100	200	300	kΩ
resistance*1	R _{VC2}	Between VC and XTN, measuremen	t circuit 4	100	200	300	K22
Input leakage resistance*1	R _{VIN}	VC pin, T _a =+25°C, measurement circ	cuit 5	10	-	-	ΜΩ
		Confirmed by acceptance sampling	V _C =0.3V	(3.92)	(4.36)	(4.80)	
	C _{VC1}	using wafer monitor pattern. Design value, excluding parasitic	V _C =1.65V	(2.35)	(2.76)	(3.17)	pF
Oscillator block built-in		capacitance	V _C =3.0V	(1.20)	(1.50)	(1.80)	
capacitance		Confirmed by acceptance sampling	V _C =0.3V	(5.88)	(6.53)	(7.18)	
	C _{VC2}	using wafer monitor pattern. Design value, excluding parasitic	V _C =1.65V	(3.51)	(4.13)	(4.75)	pF
		capacitance	V _C =3.0V	(1.80)	(2.25)	(2.70)	
Maximum modulation frequency	F_{M}	V_{DD} =3.3V, V_{C} =1.65V±1.65V,	-3dB frequency, T _a =+25°C, design value		50	-	kHz

Values in parentheses () are temporary.

Oscillator block built-in resistance: Resistance between VC-XT or VC-XTN

Input leakage resistance: Resistance between VC-VDD or VC-VSS (DC characteristic)

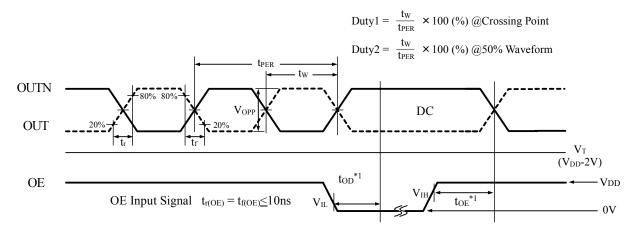
Refer to "VC Terminal Input Impedance" (TBD) (Page. 23).

^{*1.} These prescriptions indicate the following contents.

Switching Characteristics

 V_{DD} = 2.97 to 3.63V, V_{C} =0.5 V_{DD} , V_{SS} = 0V, T_{a} = -40 to +105°C unless otherwise noted

Devenuenten	Cb al	Conditions			Rating		T 14
Parameter	Symbol			MIN	TYP	MAX	Unit
	Duty1	Measured at output cross point		45	50	55	%
Duty cycle		$T_a=25$ °C, $V_{DD}=3.3$ V, measurement	circuit 6				
Buty cycle	Duty2	Measured at 50% of output amplitude	le	45	50	55	%
	Duty2	T_a =25°C, V_{DD} =3.3V, measurement	circuit 6	43	30	33	70
Output amplitude V _{OPP}		Peak to peak of output waveform		0.4			V
Output amplitude	$ m V_{OPP}$	Single-ended output signal, measurement circuit 6		0.4	_		v
		20% to 80% of output amplitude	-40 to 90°C	-	0.3	0.5	
Output rise time*1	t_r	Single-ended output signal,					ns
		measurement circuit 6	90 to 105°C	-	1	0.7	
		80% to 20% of output amplitude	-40 to 90°C	-	0.3	0.5	
Output fall time*1	$t_{\rm f}$	Single-ended output signal,					ns
		measurement circuit 6	90 to 105°C	-	-	0.7	
Output enable propagation delay*2	t_{OE}	T _a =25°C, design value, measurement circuit 7		-	1	20	μs
Output disable propagation delay	t _{OD}	T _a =25°C, design value, measuremen	at circuit 7	-	-	200	ns


^{*1.} Output rise time and output fall time may vary depending on measurement environment.

Note. The ratings are measured by using the NPC standard crystal and jig. They may vary due to crystal characteristics, so they must be carefully evaluated. The recommended crystal element characteristics are $R_1 < 20\Omega$ and $C_0 < 1.5 pF$.

^{*2.} Rating may vary depending on the power supply used, values of bypass capacitors, and other factors.

Timing chart

[Used OE pin]

*1. On an OE falling edge, the output go DC output state after the output disable propagation delay (t_{OD}) has elapsed. On an OE rising edge, the output starts after the output enable propagation delay (t_{OE}) has elapsed.

[Used OEN pin]

*2: On an OEN rising edge, the outputs go DC output state after the output disable propagation delay (t_{OE}) has elapsed. On an OEN falling edge, the output starts after the output enable propagation delay (t_{OE}) has elapsed.

FUNCTIONAL DESCRIPTION OE Function

OE pin (built-in pull-up resistor)	Oscillator	Output	
High/Open	Operating	Operating	
Low	Operating	DC output	

During standby, OUT terminal is V_{OH} level, OUTN is V_{OL} level.

OEN Function

OEN pin (built-in pull-down resistor)	Oscillator	Output
Low/Open	Operating	Operating
High	Operating	DC output

During standby, OUT terminal is V_{OH} level, OUTN is V_{OL} level

When OE is set Low and OEN is set High, it gets NPC test mode.

Oscillation Start-up Detector Function

An oscillator startup detection circuit is built-in. The circuit disables the OUT/OUTN outputs until the oscillator starts. This function prevents unstable oscillation and other problems, which can occur when power is applied, from appearing at the output.

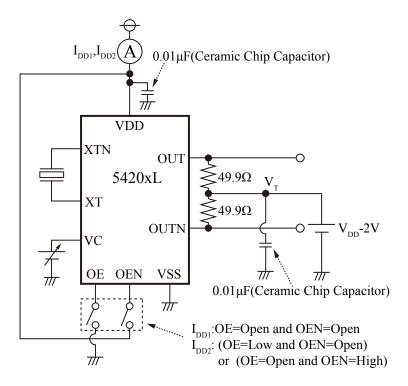
Boot Function

At the time of oscillation starting, XTN pin potential is made into the V_{DD} level. It makes negative resistance enlarged and it becomes easy to start oscillation. Beware that a current flows into VC pin until it starts oscillation, when XTN pin is V_{DD} level and the voltage below V_{DD} level is being applied to VC pin.

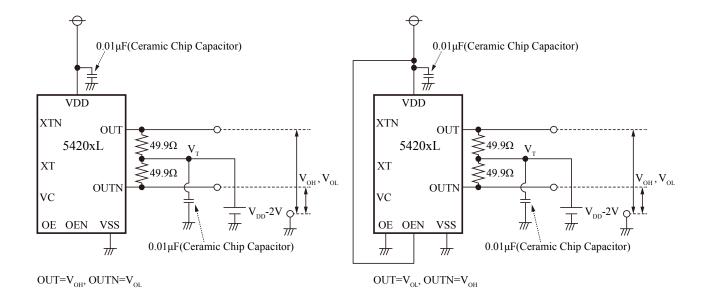
A boot function is canceled after an oscillation start.

These are measurement circuits for electrical characteristics and switching characteristics.

■ Note: Bypass capacitors specified in each measurement circuit below should be connected between VDD, V_T and VSS. Load resistance specified in each measurement circuit below should be connected to OUT and OUTN pins (excluding measurement circuit 4, 5). Circuit wiring of bypass capacitors and load resistance should be connected as short as possible (within approximately 3mm). If the circuit wiring is long, the required characteristics may not be realized. Also, if the values of bypass capacitors and load resistance differ from the description in this document or are not connected, the required characteristics may not be realized.

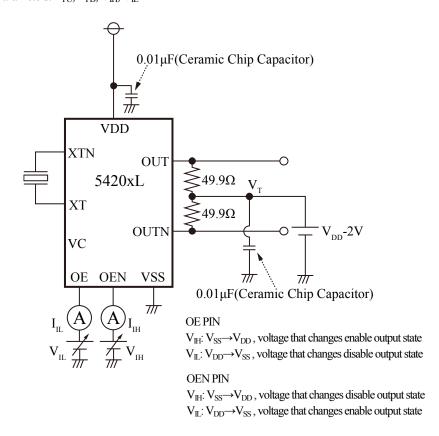

Capacitor and resistor values used by NPC

Capacitors: 0.01µF GRM188B11H103K (Murata Manufacturing Co., Ltd.)

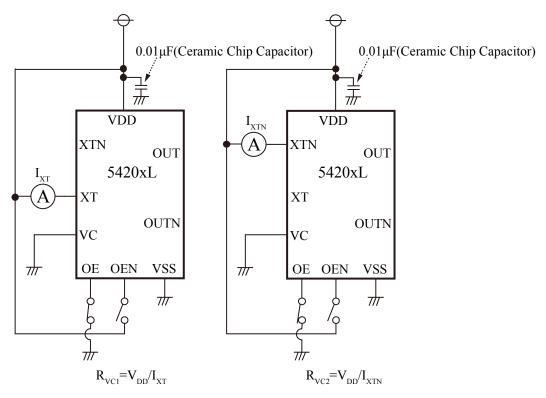

Resistors: 49.9Ω RN732ATTD49R9B25 (KOA Corporation)

MEASUREMENT CIRCUIT 1

Measurement Parameters: I_{DD1} , I_{DD2}

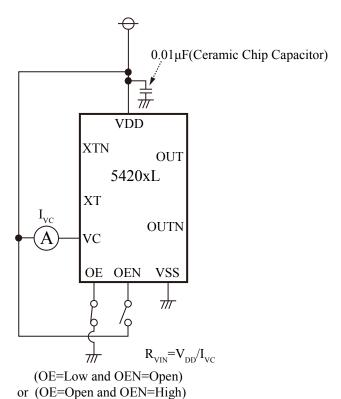


Measurement Parameters: $V_{\text{OH}}, V_{\text{OL}}$



MEASUREMENT CIRCUIT 3

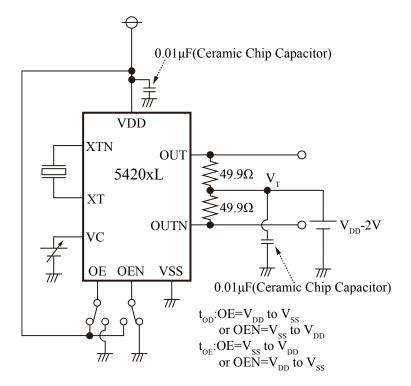
Measurement Parameters: R_{PU} , R_{PD} , V_{IH} , V_{IL}


Measurement Parameters: R_{VC1} , R_{VC2}

(OE=Low and OEN=Open) or (OE=Open and OEN=High)

MEASUREMENT CIRCUIT 5

Measurement Parameters: R_{VIN}



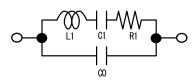
Measurement Parameters: Duty1, Duty2, V_{OPP} , t_r , t_f

MEASUREMENT CIRCUIT 7

Measurement Parameters: t_{OE} , t_{OD}

Measurement Parameters: F_M

REFERENCE DATA

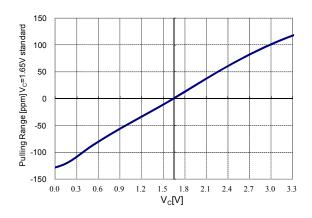

The characters given below were measured using an NPC standards jig and standard crystal element, and do not represent a guarantee of device characteristics.

Note that the characteristics will vary due to measurement environment and the oscillator element used.

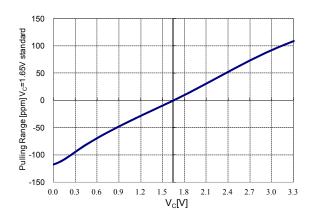
Crystal used for measurement

Parameter	BL	CL	DL
$f_{OSC}(MHz)$	122.88MHz	155.52MHz	245.76MHz
C0(pF)	1.6	1.5	TBD
γ(=C0/C1)	330	330	TBD
R1(Ω)	9	8	TBD

Crystal parameters

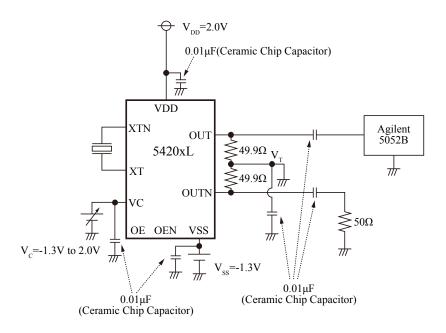


Pulling Range


[Measurement conditions] V_{DD} = +2.0V, V_{SS} = -1.3V, T_a = +25°C

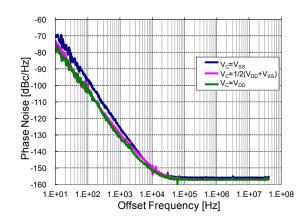
* V_C voltage in the graphs is adjusted to V_{SS} = 0V. V_C =1.65V standard

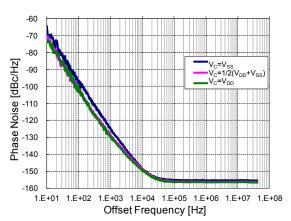
 $[5420BL] f_{OSC} = 122.88MHz$


 $[5420CL] f_{OSC} = 155.52MHz$

[5420DL] f_{OSC}=245.76MHz

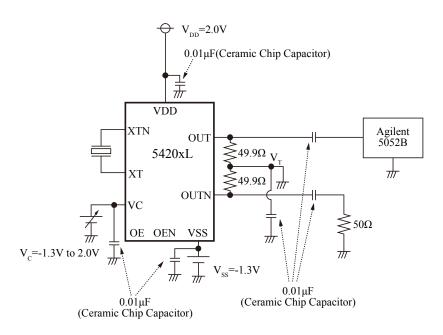
(TBD)


[Measurement circuit diagram]


Phase Noise

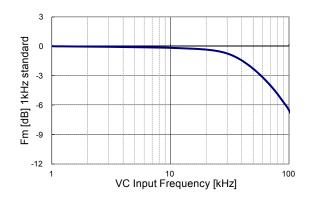
[Measurement conditions] V_{DD} =+2.0V, V_{SS} =-1.3V, T_a =+25°C

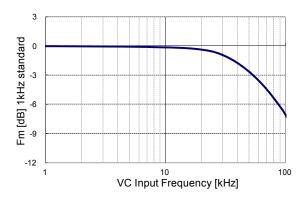
 $[5420BL]\,f_{OSC}\!\!=\!\!122.88MHz$


 $[5420CL] f_{OSC} = 155.52MHz$

 $[5420DL] f_{OSC} = 245.76MHz$

(TBD)

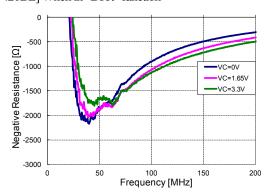

[Measurement circuit diagram]


Modulation Bandwidth

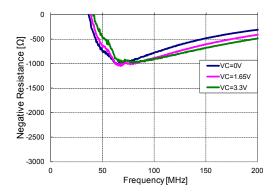
[Measurement conditions] V_{DD} = +2.0V, V_{SS} = -1.3V, T_a = +25°C

 $[5420BL]\,f_{OSC}\!\!=\!\!122.88MHz$

 $[5420CL] f_{OSC} = 155.52MHz$

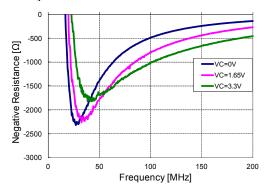

 $[5420DL] f_{OSC} = 245.76MHz$

(TBD)

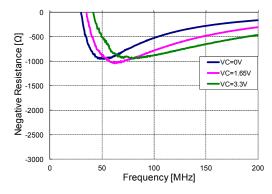

[Measurement circuit diagram] Measurement circuit 8

Negative Resistance

[Measurement conditions] V_{DD} =+3.3V, T_a =-25°C, C_0 =0pF [5420BL] When in "Boot" function



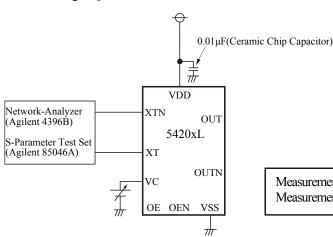
[5420CL] When in "Boot" function



[5420DL] When in "Boot" function

[5420BL] After release "Boot" function

[5420CL] After release "Boot" function

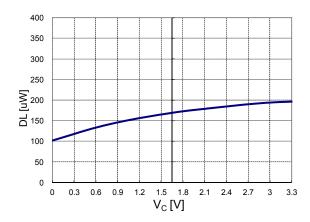


[5420DL] After release "Boot" function

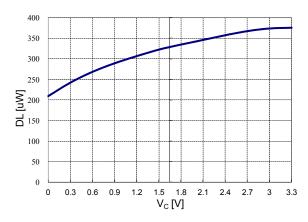
(TBD)

(TBD)

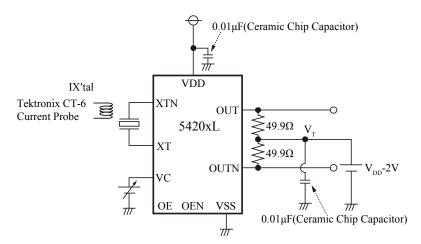
[Measurement circuit diagram]


Measurement results using 4396B Agilent analyzer on NPC test jig. Measurements will vary with test jig and measurement environment.

Drive Level


[Measurement conditions] V_{DD} =+3.3V, T_a =+25°C

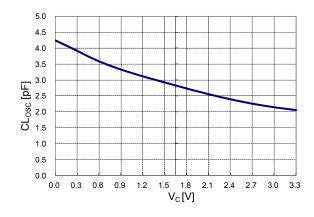
* V_C voltage in the graphs is adjusted to V_{SS} = 0V.


$[5420CL] f_{OSC} = 155.52MHz$

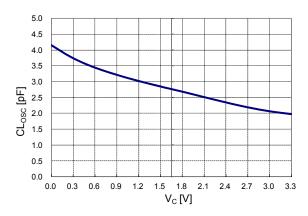
 $[5420DL] f_{OSC} = 245.76MHz$

(TBD)

[Measurement circuit diagram]

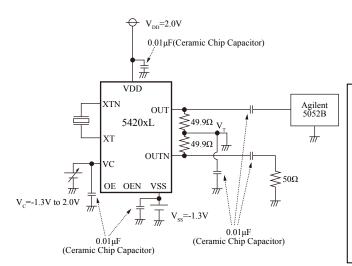


Oscillator CL Characteristics


[Measurement conditions] V_{DD} =+2.0V, V_{SS} =-1.3V, T_a =+25°C

* V_C voltage in the graphs is adjusted to V_{SS} = 0V.

 $[5420BL] f_{OSC} = 122.88MHz$


 $[5420CL] f_{OSC}=155.52MHz$

 $[5420DL] f_{OSC} = 245.76MHz$

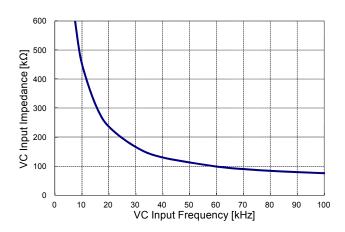
(TBD)

[Measurement circuit diagram]

 ${\rm CL}_{\rm OSC}$: Oscillator circuit equivalent capacitance determined by oscillator frequency

$$CLosc = \frac{C_1}{\left(\frac{f_{OSC}}{fs}\right)^2 - 1} - C_0$$

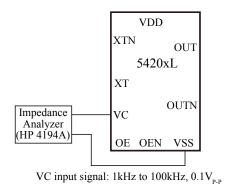
C₁: Crystal element equivalent series capacitance


C₀: Crystal element equivalent parallel capacitance

fs: Crystal element series resonance frequency

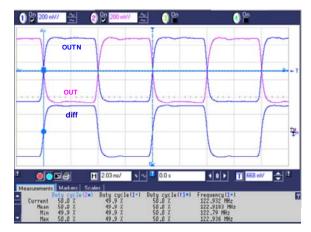
VC Terminal Input Impedance

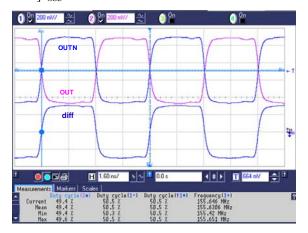
[Measurement conditions] T_a =+25°C, V_C =0V


[5420BL, CL]

[5420DL]

(TBD)


[Measurement circuit diagram]


Output Waveform

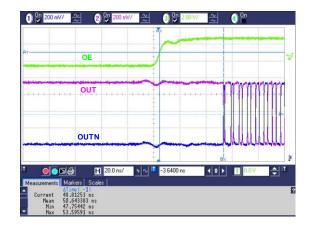
[Measurement conditions] V_{DD} =+3.3V, V_{C} =+1.65V, T_{a} =+25°C

 $[5420BL]\,f_{OSC}\!\!=\!\!122.88MHz$

 $[5420CL] f_{OSC} = 155.52MHz$

[5420DL] f_{OSC}=245.76MHz

(TBD)


 $[Measurement\ circuit\ diagram]\ Measurement\ circuit\ 6$

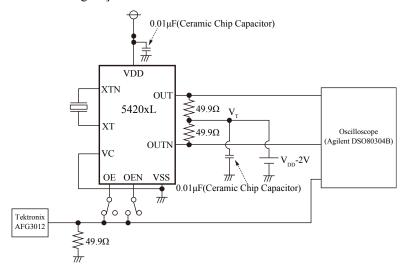
Measurement equipment: Oscilloscope DSO80604B (Agilent), Differential probe 1134A (Probe head E2678A)

Output Enable Propagation Delay

[Measurement conditions] V_{DD} =+3.3V, V_{C} =+1.65V, T_{a} =+25°C

 $[5420BL] f_{OSC}=122.88MHz$

 $[5420CL] f_{OSC} = 155.52MHz$



 $[5420DL] f_{OSC} = 245.76MHz$

(TBD)

Measurement equipment: Power supply voltage PW18-1.8AQYB (KENWOOD)

[Measurement circuit diagram]

^{*} t_{OE} is the time required for the output level to stabilize, and which varies depending on the power supply used, bypass capacitor values, and other factors.

Please pay your attention to the following points at time of using the products shown in this document.

- 1. The products shown in this document (hereinafter "Products") are designed and manufactured to the generally accepted standards of reliability as expected for use in general electronic and electrical equipment, such as personal equipment, machine tools and measurement equipment. The Products are not designed and manufactured to be used in any other special equipment requiring extremely high level of reliability and safety, such as aerospace equipment, nuclear power control equipment, medical equipment, transportation equipment, disaster prevention equipment, security equipment. The Products are not designed and manufactured to be used for the apparatus that exerts harmful influence on the human lives due to the defects, failure or malfunction of the Products. If you wish to use the Products in that apparatus, please contact our sales section in advance.
 In the event that the Products are used in such apparatus without our prior approval, we assume no responsibility whatsoever for any
 - In the event that the Products are used in such apparatus without our prior approval, we assume no responsibility whatsoever for any damages resulting from the use of that apparatus.
- 2. NPC reserves the right to change the specifications of the Products in order to improve the characteristics or reliability thereof.
- 3. The information described in this document is presented only as a guide for using the Products. No responsibility is assumed by us for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of the third parties. Then, we assume no responsibility whatsoever for any damages resulting from that infringements.
- 4. The constant of each circuit shown in this document is described as an example, and it is not guaranteed about its value of the mass production products.
- 5. In the case of that the Products in this document falls under the foreign exchange and foreign trade control law or other applicable laws and regulations, approval of the export to be based on those laws and regulations are necessary. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

1-9-9, Hatchobori, Chuo-ku, Tokyo 104-0032, Japan Telephone: +81-3-5541-6501 Facsimile: +81-3-5541-6510 http://www.npc.co.jp/ Email:sales@npc.co.jp

ND14006-E-00 2014.06