

OVERVIEW

The 5410 series are VCXO module ICs supported 20MHz to 80MHz fundamental oscillation. They employ a recently developed varicap diode fabrication process at fixation communication usage that provides a low phase noise characteristic and a wide frequency pulling range without any external components. The 5410 series are ideal for wide pulling range, low phase noise, VCXO modules.

FEATURES

- VCXO with recently developed varicap diode built-in
- Wide frequency pulling range
- ± 150 ppm@A1 version, VC=1.65 \pm 1.65V, f=40MHz (Crystal unit: γ = 330, C₀ = 1.3pF)
- ± 140 ppm@B1 version, VC=1.65 \pm 1.65V, f=61.44MHz (Crystal unit: γ = 350, C₀ = 3.2pF)
- ± 140 ppm@C1 version, VC=1.65 \pm 1.65V, f=77.76MHz (Crystal unit: γ = 340, C₀ = 2.8pF)
- Oscillation frequency range (for fundamental oscillation):

20 to 40MHz (A1~A5 version) 40 to 62MHz (B1~B3 version) 60 to 80MHz (C1 version)

- Low phase noise: -135dBc/Hz@A1 version, 1kHz Offset, f=40MHz
 - -160dBc/Hz@A1 version, 10MHz Offset, f=40MHz (Crystal unit: γ = 330, C_0 = 1.3pF)
 - -126dBc/Hz@B1 version, 1kHz Offset, f=61.44MHz
 - -160dBc/Hz@B1 version, 10MHz Offset, f=61.44MHz
 - (Crystal unit: $\gamma = 350$, $C_0 = 3.2 pF$)
 - -126dBc/Hz@C1 version, 1kHz Offset, f=77.76MHz
 - -160dBc/Hz@C1 version, 10MHz Offset, f=77.76MHz

(Crystal unit: γ = 340, C_0 = 2.8pF)

- Operating supply voltage range: 2.97 to 3.63V
- Operating current consumption
 1.6mA@A1 version, f=40MHz, Q pin no load
 2.7mA@B1 version, f=61.44MHz, Q pin no load
 3.2mA@C1 version, f=77.76MHz, Q pin no load
- Frequency divider built-in Selectable by version:

 $f_{OSC}, f_{OSC}/2, f_{OSC}/4, f_{OSC}/8, f_{OSC}/16$

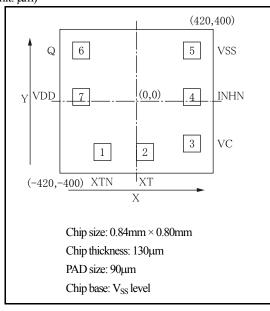
- CMOS output
- Output drive capability: 2.8mA
- -40 to 105°C operating temperature range
- Standby function
 High impedance in standby mode, oscillator stops
- CMOS output duty level (1/2V_{DD})
- 50±5% output duty
- Wafer form (WF5410xx)
- Chip form (CF5410xx)

APPLICATIONS

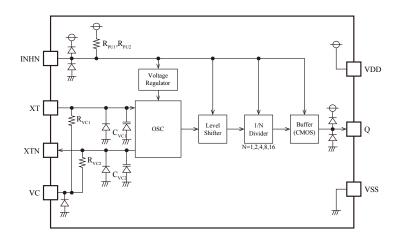
Miniature VCXO modules for fixation communication

SERIES CONFIGURATION

Operating supply voltage	Recommended operating		Output i	out frequency and version name				
range [V]	frequency range ^{*1} [MHz]	f_{OSC}	f _{OSC} /2	f _{OSC} /4	f _{OSC} /8	f _{OSC} /16		
	20 to 40	5410A1	5410A2	5410A3	5410A4	5410A5		
2.97 to 3.63	40 to 62	5410B1	5410B2	5410B3	-	-		
	60 to 80	5410C1	-	-	-	-		


^{*1.} The recommended oscillation frequency is a yardstick value derived from the resonator used for NPC characteristics authentication. However, the oscillation frequency range is not guaranteed. Specifically, the characteristics can vary greatly due to resonator characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

ORDERING INFORMATION


Device	Package	Version name
WF5410xx-4	Wafer form	WF5410 □ □ − 4 Form WF:Wafer form Frequency divider function
CF5410xx-4	Chip form	CF: Chip (Die) form Oscillation frequency range A: 20 to 40MHz B: 40 to 62MHz C: 60 to 80MHz

PAD LAYOUT

(Unit: µm)

BLOCK DIAGRAM

PIN DESCRIPTION and PAD COORDINATE

No.	Pin	I/O	Description	PAD coord	linate [µm]
110.	1111	10	Description	X	Y
1	XTN	О	Crystal connection pins.	-189.0	-295.0
2	XT	I	Crystal is connected between XT and XTN.	59.4	-295.0
3	VC	I	Oscillation frequency control voltage input pin (positive polarity) (frequency increase with increasing voltage)	315.0	-244.6
4	INHN	I	Input pin controlled output state (oscillator stops when LOW), power-saving pull-up resistor built-in	315.0	34.2
5	VSS	-	(-) ground	315.0	280.2
6	Q	О	Output one of f_{OSC} , $f_{OSC}/2$, $f_{OSC}/4$, $f_{OSC}/8$, $f_{OSC}/16$	-315.0	280.2
7	VDD	-	(+) supply voltage	-315.0	34.2

SPECIFICATIONS

Absolute Maximum Ratings

 $V_{SS}=0V$

Parameter	Symbol	Condition		Rating	Unit		
Supply voltage range*1	V_{DD}	Between VDD and VSS		Between VDD and VSS		-0.3 to +5.0	V
Input voltage range*1*2	V _{IN}	Input pins		-0.3 to V _{DD} +0.3	V		
Output voltage range*1*2	V _{OUT}	Output pins		-0.3 to $V_{DD} + 0.3$	V		
Junction temperature*3	T_j			+125	°C		
Storage temperature range*4	T _{STG}	Wafer form, Chip form		-65 to +125	°C		
Output current*3	ī	Onin	T _a =-40~+85°C	±20	A		
Output current	lout	Q pin	$T_a = -40 \sim +105$ °C	±10	mA		

^{*1.} This parameter rating is the values that must never exceed even for a moment. This product may suffer breakdown if this parameter rating is exceeded. Operation and characteristics are guaranteed only when the product is operated at recommended operating conditions.

Recommended Operating Conditions

 $V_{SS}=0V$

Parameter	Symbol	Condition	MIN	ТҮР	MAX	Unit
		5410A1~5410A5 version	20	-	40	
Oscillation frequency range*1	f_{OSC}	5410B1~5410B3 version	40	-	62	MHz
		5410C version	60	-	80	
		5410A1~5410A5 version	1.25	-	40	
Output frequency range	f_{OUT}	5410B1~5410B3 version	10	-	62	MHz
		5410C version	60	-	80	
Operating supply voltage	V_{DD}	Between VDD and VSS*2	2.97	-	3.63	V
Input voltage	V_{IN}	VC pin , INHN pin	V_{SS}	-	V_{DD}	V
Operating temperature	Ta		-40	-	+105	°C
Output load	C_L	Q pin	-	-	15	pF

^{*1.} The oscillation frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillation frequency range is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

Note. Since it may influence the reliability if it is used out of range of recommended operating conditions, this product should be used within this range.

^{*2.} V_{DD} is a V_{DD} value of recommended operating conditions.

^{*3.} Do not exceed the absolute maximum ratings. If they are exceeded, a characteristic and reliability will be degraded.

^{*4.} When stored in nitrogen or vacuum atmosphere applied to IC itself only (excluding packaging materials).

^{*2.} Mount a ceramic chip capacitor that is larger than 0.01µF proximal to IC (within approximately 3mm) between VDD and VSS in order to obtain stable operation of 5410 series. In addition, the wiring pattern between IC and capacitor should be as wide as possible.

Electrical Characteristics 5410A1~5410A5 version

 V_{DD} =2.97 to 3.63V, V_{C} =0.5 V_{DD} , V_{SS} =0V, T_{a} = -40 to +105°C unless otherwise noted.

Parameter	Symbol	Condition			MIN	TYP	MAX	Unit
		5410A1(f_{OSC}), measurement 1, no load, V_{DD} =3.3V, f_{OSC} =40MHz, f_{OUI} =40MHz	5410A1(f _{OSC}), measurement 1, no load, INHN="OPEN";			1.6	3.0	mA
		$5410A2(f_{OSC}/2)$, measurement 1, no loa $V_{DD}=3.3V$, $f_{OSC}=40MHz$, $f_{OUI}=20MHz$	d, INHN	Ι=''OPEN'',	-	1.2	1.8	mA
Current consumption	I_{DD}	5410A3(f_{OSC} /4), measurement 1, no loa V_{DD} =3.3V, f_{OSC} =40MHz, f_{OUI} =10MHz	d, INHN	⊫''OPEN'',	-	1.1	1.6	mA
		$5410A4(f_{OSC}/8)$, measurement 1, no loa V_{DD} =3.3V, f_{OSC} =40MHz, f_{OUI} =5MHz	d, INHN	⊫"OPEN",	-	1.0	1.5	mA
		$5410A5(f_{OSC}/16)$, measurement 1, no lo V_{DD} =3.3V, f_{OSC} =40MHz, f_{OUI} =2.5MHz		N=''OPEN'',	-	0.9	1.4	mA
Charaffer armount	T		$T_a = 0$	-40∼+85°C	-	-	10	
Standby current	I_{STB}	measurement 1, INHN="Low"	$T_a = 0$	-40∼+105°C	-	-	100	μА
HIGH-level output voltage	V _{OH}	measurement 2, Q pin, I _{OH} =-2.8mA			V _{DD} -0.4	-	-	V
LOW-level output voltage	V _{OL}	measurement 2, Q pin, I _{OL} =2.8mA			-	-	0.4	V
HIGH-level input voltage	$V_{ m IH}$	measurement 3, INHN pin			0.7V _{DD}	-	V_{DD}	V
LOW-level input voltage	$V_{\rm IL}$	measurement 3, INHN pin	measurement 3, INHN pin			-	$0.3V_{DD}$	V
Output leakage current	I_Z	measurement 4, Q pin, T _a =25°C, INHN	measurement 4, Q pin, T _a =25°C , INHN="Low"			-	1	μА
D. II.	R _{PU1}	measurement 5, INHN pin, V _{INHN} =0V			1	3.5	9	ΜΩ
Pull-up resistance	R _{PU2}	measurement 5, INHN pin, V _{INHN} =0.7V	$J_{ m DD}$		23	47	71	kΩ
	n	VT IVO	A1 vers	sion	210	420	630	1.0
Oscillator block built-in	R _{VC1}	measurement 6, between XT and VC	A2, A3	, A4, A5 version	397	793	1190	kΩ
resistance	R _{VC2}	measurement 6, between XTN and VC	•		116	233	350	kΩ
				V _C =0.3V	5.1	5.6	6.2	
	C _{VC1}	Design value. Excluding parasitic capacitance.*1		V _C =1.65V	2.5	3.1	3.6	pF
Oscillator block built-in		Excluding parasitic capacitance.		V _C =3.0V	1.2	1.5	1.8	
capacitance				V _C =0.3V	7.6	8.4	9.3	
	C _{VC2}	Design value. Excluding parasitic capacitance.*1		V _C =1.65V	3.8	4.7	5.4	pF
		Excluding parasitic capacitance. $V_C=3.0V$		1.7	2.3	2.8		
Input leakage resistance	R _{VIN}	measurement 7, VC pin, T _a =25°C		•	10	-	-	ΜΩ
Maximum modulation frequency	F_{M}	$\label{eq:bounds} \begin{split} \text{measurement 10, -3dB frequency, T_a=2} \\ V_{DD} &= 3.3 \text{V}, V_{C} = 1.65 \text{V} \pm 1.65 \text{V} \\ \text{crystal} &= 40 \text{MHz} \left(R_1 = 42 \Omega, \text{C0} = 1.3 \text{pF} \right) \end{split}$	5°C		15	25	-	kHz

^{*1.} Confirmed by sampling inspection against a monitor pattern in the wafer.

^{*} The ratings are measured by using the NPC standard resonator and jig. They may vary due to resonator characteristics, so they must be carefully evaluated.

5410B1~5410B3 version

 V_{DD} =2.97 to 3.63V, V_{C} =0.5 V_{DD} , V_{SS} =0V, T_{a} = -40 to +105°C unless otherwise noted.

Parameter	Symbol	Condition			MIN	TYP	MAX	Unit
		$5410B1(f_{OSC}), measurement~1, no~load, II \\ V_{DD} = 3.3 V, f_{OSC} = 61.44 MHz, f_{OUI} = 61.44 MHz$		OPEN",	-	2.7	5.0	mA
Current consumption	I _{DD}			="OPEN",	-	2.0	3.2	mA
				="OPEN",	-	1.6	2.6	mA
Standby current	I_{STB}	measurement 1, INHN="Low"	$T_a = -$	40∼+85°C	-	-	10	μA
Standoy Carent	ISIB	measurement 1, ii vi ii v Low	$T_a = -$	40∼+105°C	-	-	100	μΛ
HIGH-level output voltage	V_{OH}	measurement 2, Q pin, I _{OH} =-2.8mA			V _{DD} -0.4	-	-	V
LOW-level output voltage	V_{OL}	measurement 2, Q pin, I _{OL} =2.8mA			-	-	0.4	V
HIGH-level input voltage	V_{IH}	measurement 3, INHN pin			$0.7V_{DD}$	-	V_{DD}	V
LOW-level input voltage	$V_{\rm IL}$	measurement 3, INHN pin	0	-	$0.3V_{DD}$	V		
Output leakage current	I_Z	measurement 4, Q pin, T _a =25°C, INHN=	-1	-	1	μА		
D. II.	R_{PU1}	measurement 5, INHN pin, V _{INHN} =0V	measurement 5, INHN pin, V _{INHN} =0V			3.5	9	ΜΩ
Pull-up resistance	R _{PU2}	measurement 5, INHN pin, V _{INHN} =0.7V _D)D		23	47	71	kΩ
	D.	VIII IVI	B1 ve	rsion	210	420	630	1.0
Oscillator block built-in resistance	R _{VC1}	measurement 6, between XT and VC	B2, B	3 version	303	606	909	kΩ
resistance	R _{VC2}	measurement 6, between XTN and VC	•		116	233	350	kΩ
				V _C =0.3V	5.1	5.6	6.2	
	C _{VC1}	Design value. Excluding parasitic capacitance.*1		V _C =1.65V	2.5	3.1	3.6	pF
Oscillator block built-in		Excluding parasitic capacitatice.		V _C =3.0V	1.2	1.5	1.8	
capacitance				V _C =0.3V	5.1	5.6	6.2	
	C _{VC2}	Design value.	Design value.		2.5	3.1	3.6	pF
		Excluding parasitic capacitance.*1 $V_C=3.0V$		1.2	1.5	1.8	^	
Input leakage resistance	R _{VIN}	measurement 7, VC pin, T _a =25°C			10	-	-	ΜΩ
Maximum modulation frequency	F_{M}	measurement 10, -3dB frequency, T_a =25° V_{DD} =3.3V, V_C =1.65V±1.65V crystal=61.44MHz (R_1 =20 Ω , C_0 =3.2pF)	PC		15	25	-	kHz

^{*1.} Confirmed by sampling inspection against a monitor pattern in the wafer.

^{*} The ratings are measured by using the NPC standard resonator and jig. They may vary due to resonator characteristics, so they must be carefully evaluated.

5410C1 version

 V_{DD} =2.97 to 3.63 V, V_{C} =0.5 V_{DD} , V_{SS} =0 V, T_{a} = -40 to +105 °C unless otherwise noted.

Parameter	Symbol	Conditions		MIN	TYP	MAX	Unit
Current consumption (C1 version: f _{OSC} output)	I _{DD}	Measurement circuit 1, INHN=OPEN, no $V_{DD} = 3.3V$, $f_{OSC} = 77.76$ MHz, $f_{OUT} = 77$.		-	3.2	6.0	mA
Storedler or proper	T	Measurement circuit 1,	$T_a = -40 \sim +85^{\circ}C$	-	-	10	4
Standby current	I_{STB}	INHN=LOW	$T_a = -40 \sim +105$ °C	-	-	100	μА
HIGH-level output voltage	V_{OH}	Measurement circuit 2, I _{OH} =-2.8mA, Q p	in	V _{DD} -0.4	ı	-	V
LOW-level output voltage	V _{OL}	Measurement circuit 2, I _{OL} =2.8mA, Q pin	n	-	-	0.4	V
HIGH-level input voltage	$V_{ m IH}$	Measurement circuit 3, INHN pin		$0.7V_{DD}$	-	V_{DD}	V
LOW-level input voltage	V_{IL}	Measurement circuit 3, INHN pin		0	-	$0.3V_{DD}$	V
Output leakage current	I_Z	Measurement circuit 4, Ta = 25°C INHN = Low, Q pin	· · · · · · · · · · · · · · · · · · ·			1	μА
Dell and marietan as	R_{PU1}	Measurement circuit 5, INHN pin, V _{INHN}	1	3.5	9	ΜΩ	
Pull-up resistance	R _{PU2}	Measurement circuit 5, INHN pin, V _{INHN}	23	47	71	kΩ	
Oscillator block built-in	R _{VC1}	Measurement circuit 6, between XT an	d VC pins	116	233	350	10
resistance	R _{VC2}	Measurement circuit 6, between XTN an	d VC pins	116	233	350	kΩ
			$V_C = 0.3V$	5.1	5.6	6.2	
	C _{VC1}	Design value. Excludes parasitic capacitance*1	$V_{\rm C} = 1.65 \rm V$	2.5	3.1	3.6	pF
Oscillator block built-in		Excludes parasitic capacitanee	$V_{\rm C} = 3.0 \rm V$	1.2	1.5	1.8	
capacitance			$V_{\rm C} = 0.3 \rm V$	5.1	5.6	6.2	
	C _{VC2}	Design value. Excludes parasitic capacitance*1	$V_{\rm C} = 1.65 \rm V$	2.5	3.1	3.6	pF
		Excludes parasitic capacitance $V_C = 3.0V$		1.2	1.5	1.8	
Input leakage resistance	R _{VIN}	Measurement circuit 7, VC pin, Ta = 25°C	C	10	-	-	ΜΩ
Maximum modulation frequency	F_{M}	Measurement circuit 10, -3dB Frequency $V_{DD} = 3.3V$, $V_{C} = 1.65V \pm 1.65V$, $Ta = 25^{\circ}$ crystal = 77.76MHz (R_{1} =7 Ω , C_{0} =2.8pF)		15	25	-	kHz

^{*1.} Confirmed by sampling inspection against a monitor pattern in the wafer.

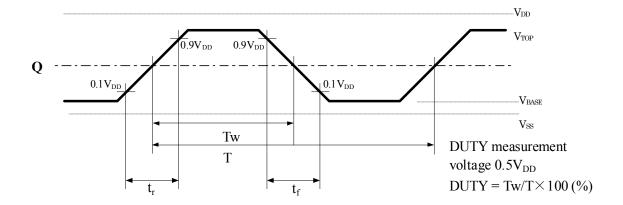
^{*} The ratings are measured by using the NPC standard resonator and jig. They may vary due to resonator characteristics, so they must be carefully evaluated.

Switching Characteristics 5410A1~5410A5 version

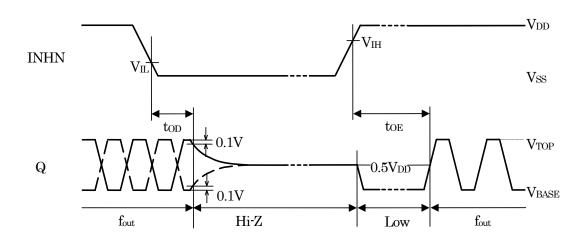
 $V_{DD} = 2.97$ to 3.63 V, $V_{C} = 0.5 V_{DD}$, $V_{SS} = 0$ V, $V_{A} = -40$ to +105 °C unless otherwise noted

Parameter	Symbol	Condition		MIN	ТҮР	MAX	Unit
AC HIGH-level output voltage	V_{TOP}	measurement 8, C_L =15	БрБ	$0.9V_{DD}$	-	-	V
AC LOW-level output voltage	V_{BASE}	measurement 8, C _L =15	БрБ	-	-	$0.1V_{DD}$	V
Q pin	4	measurement 8,	$T_a = -40 \sim +85$ °C	_	2.8	6.0	ma
Output rise time	t _r	C_L =15pF 0.1 V_{DD} \rightarrow 0.9 V_{DD}	$T_a = -40 \sim +105$ °C	-	1	6.5	ns
Q pin	+	measurement 8,	$T_a = -40 \sim +85^{\circ}C$	-	3.0	6.0	na
Output fall time	t_{f}	C_L =15pF 0.9 V_{DD} \rightarrow 0.1 V_{DD}	$T_a = -40 \sim +105$ °C	-	ı	6.5	ns
Q pin Output duty cycle	DUTY	measurement 8, V _{DD} =. C _L =15pF, T _a =25°C,	3.3V	45	50	55	%
Q pin Output enable time	t _{OE}	measurement 9, T _a =25°C, C _L =15pF		-	-	2	ms
Q pin Output disable delay time	t _{OD}	measurement 9, T _a =25	°C, C _L =15pF	-	-	200	ns

Note. The ratings are measured by using the NPC standard crystal and jig. They may vary due to crystal characteristics, so they must be carefully evaluated.


5410B1~5410B3, C1 version

 $V_{DD} = 2.97$ to 3.63V, $V_{C} = 0.5V_{DD}$, $V_{SS} = 0V$, $T_{a} = -40$ to +105°C unless otherwise noted


Parameter	Symbol	Condition		MIN	ТҮР	MAX	Unit
AC HIGH-level output voltage	V_{TOP}	measurement 8, C _L =1:	5pF	$0.9V_{DD}$	-	-	V
AC LOW-level output voltage	V _{BASE}	measurement 8, C _L =1	5pF	-	-	$0.1V_{DD}$	V
Q pin	4	measurement 8,	$T_a = -40 \sim +85$ °C	-	2.2	5.0	ma
Output rise time	t _r	C_L =15pF 0.1 V_{DD} \rightarrow 0.9 V_{DD}	$T_a = -40 \sim +105$ °C	-	-	5.5	ns
Q pin	4	measurement 8,	$T_a = -40 \sim +85^{\circ}C$	-	2.4	5.0	ma
Output fall time	t_{f}	$C_{L}=15pF$ $0.9V_{DD}\rightarrow0.1V_{DD}$	$T_a = -40 \sim +105$ °C	-	-	5.5	ns
Q pin Output duty cycle	DUTY	measurement 8, V_{DD} = C_L =15pF, T_a =25°C,	3.3V	45	50	55	%
Q pin Output enable time	t _{OE}	measurement 9, T _a =25°C, C _L =15pF		-	-	2	ms
Q pin Output disable delay time	t _{OD}	measurement 9, T _a =25	5°C, C _L =15pF	-	-	200	ns

Note. The ratings are measured by using the NPC standard crystal and jig. They may vary due to crystal characteristics, so they must be carefully evaluated.

Switch Timing Measurement Waveform

Q pin switching waveform

When INHN goes HIGH to LOW, the Q output becomes high impedance.

When INHN goes LOW to HIGH, the Q output goes LOW once and then becomes normal output operation after having detected oscillation signals.

Output state control switching waveform

FUNCTIONAL DESCRIPTION

INHN Function

When INHN pin goes LOW, the Q pin becomes high impedance and the oscillator stops.

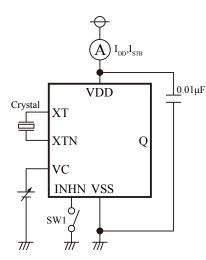
Power Saving Pull-up Resistor

The INHN pin pull-up resistance changes in response to the input level (High or Low). When INHN pin is tied Low (standby state), the pull-up resistance becomes large (R_{PUI}), reducing the current consumed by the resistance. When INHN pin is open circuit, the pull-up resistance becomes small (R_{PU2}), decreasing the susceptibility to the effects of external noise.

Boot function

At the time of oscillation starting, XT pin potential is made into the V_{DD} level. It makes negative resistance enlarged and it becomes easy to start oscillation. Beware that a current flows into VC pin until it starts oscillation, when XT pin is V_{DD} level and the voltage below V_{DD} level is being applied to VC pin.

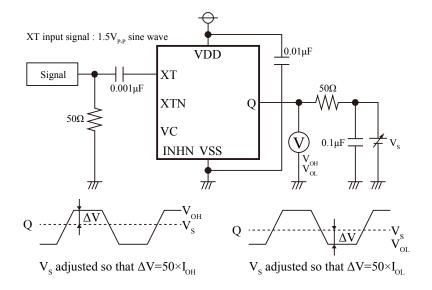
A boot function is canceled after an oscillation start.


Oscillation Start-up Detector Function

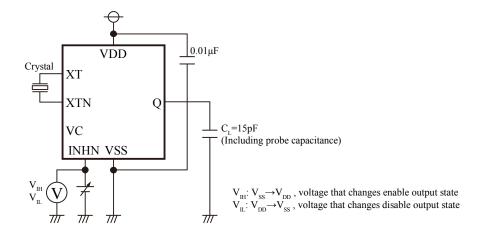
The 5410 series incorporate an oscillation detector circuit.

The oscillation detector circuit disables the Q output until crystal oscillation becomes stable when oscillator circuit starts up. This reduces the risk of abnormal oscillator behavior in the initial power up and in a reactivation by INHN. [when the oscillator starts by power apply and reactivation by INHN.

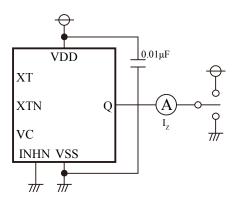
MEASUREMENT CIRCUITS MEASUREMENT CIRCUIT 1


Measurement Parameter: $I_{\text{DD}},\,I_{\text{STB}}$

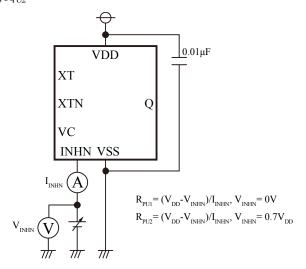
Parameter	SW1
I_{DD}	OFF
I_{STB}	ON


MEASUREMENT CIRCUIT 2

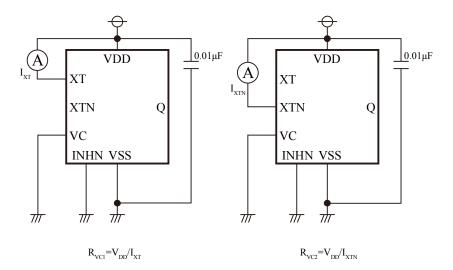
Measurement Parameter: $V_{\text{OH}}, V_{\text{OL}}$


MEASUREMENT CIRCUIT 3

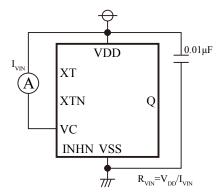
Measurement Parameter: $V_{\text{IH}}, V_{\text{IL}}$


MEASUREMENT CIRCUIT 4

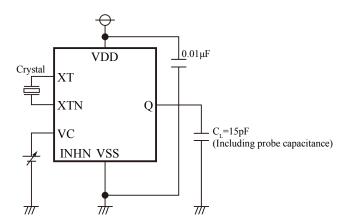
Measurement Parameter: I_Z


MEASUREMENT CIRCUIT 5

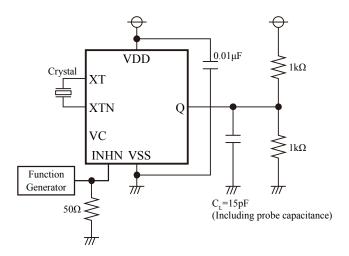
Measurement Parameter: $R_{PU1},\,R_{PU2}$


MEASUREMENT CIRCUIT 6

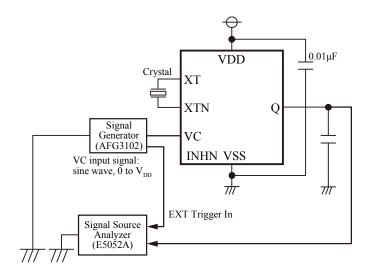
 $Measurement\ Parameter:\ R_{VC1},\ R_{VC2}$


MEASUREMENT CIRCUIT 7

Measurement Parameter: $R_{V\!I\!N}$


MEASUREMENT CIRCUIT 8

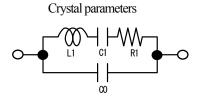
Measurement Parameter: DUTY, t_{r} , t_{f} , Pulling Range, CL_{OSC} , V_{TOP} , T_{BASE}


MEASUREMENT CIRCUIT 9

Measurement Parameter: $t_{\text{OE}}, t_{\text{OD}}$

MEASUREMENT CIRCUIT 10

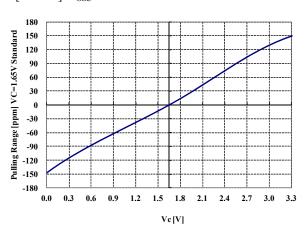
Measurement Parameter: F_{M}

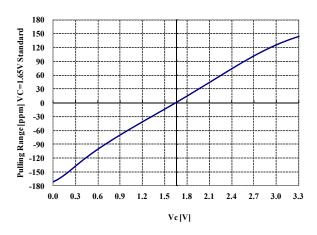


REFERENCE DATA

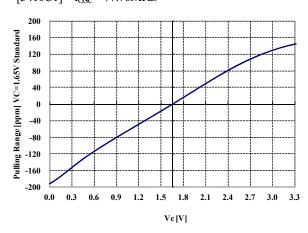
The following characteristics are measured using the crystal below. Note that the characteristics will vary with the crystal used.

Crystal used for measurement

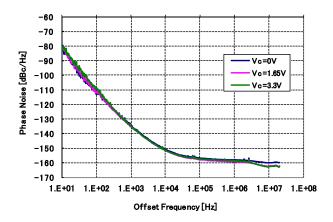

Parameter	5410Ax	5410Bx	5410C1
f _s (MHz)	39.98946	61.40941	77.72279
$C_0(pF)$	1.3	3.2	2.8
$\gamma (=C_0/C_1)$	330	350	340

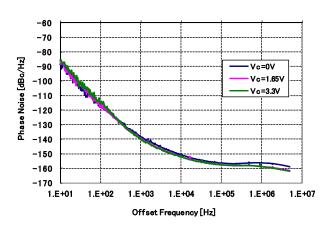

Frequency Pulling Range

[Measurament conditions] V_{DD} =+3.3V, T_a =+25°C, V_C =1.65V

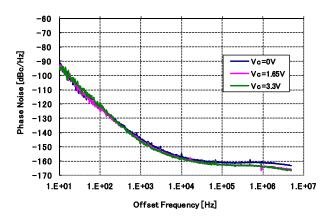

$$[5410Ax] \quad f_{OSC} = 40MHz$$

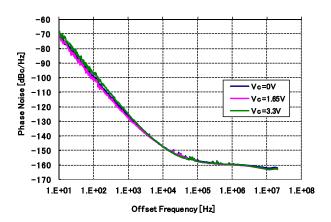
[5410Bx]
$$f_{OSC} = 61.44 \text{ MHz}$$


[5410C1]
$$f_{OSC} = 77.76MHz$$

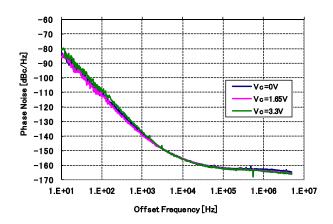

Refer to "MEASUREMENT CIRCUIT 8" for measurement circuit diagram.

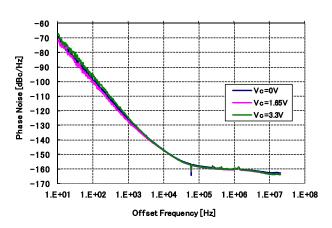
Phase Noise

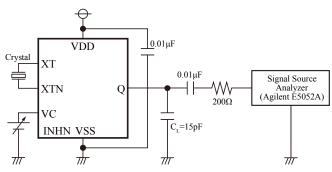


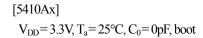

[5410A2] V_{DD} =3.3V, T_a =25°C, f_{OSC} =40MHz, f_{OUI} =20MHz

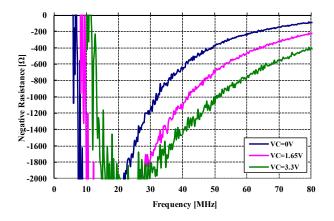
[5410A3] V_{DD} =3.3V, T_a =25°C, f_{OSC} =40MHz, f_{OUI} =10MHz


[5410B1] V_{DD} =3.3V, T_a =25°C, f_{OSC} =61.44MHz, f_{OUI} =61.44MHz

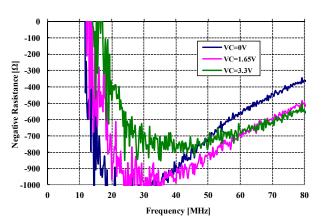

[5410B2] V_{DD} =3.3V, T_a =25°C, f_{OSC} =61.44MHz, f_{OUT} =30.72MHz


[5410B3] V_{DD} =3.3V, T_a =25°C, f_{OSC} =61.44MHz, f_{OUI} =15.36MHz

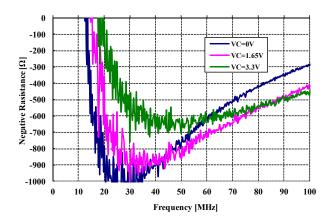

[5410C1] V_{DD} =3.3V, T_a =25°C, f_{OSC} =77.76MHz, f_{OUT} =77.76MHz

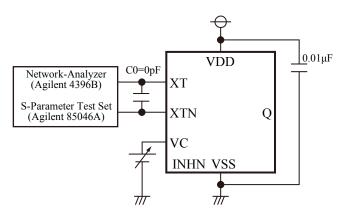


[Measurement circuit diagram]

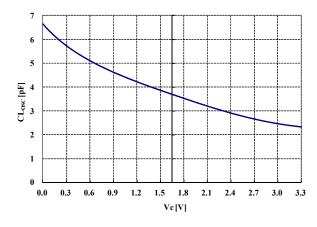


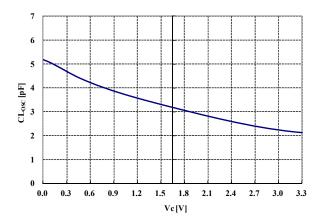
Negative Resistance



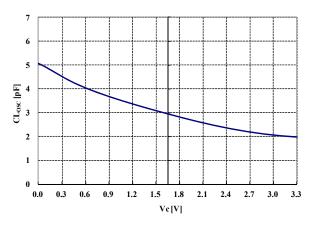

[5410Bx]
$$V_{DD}$$
= 3.3V, T_a = 25°C, C_0 = 0pF, boot

[5410C1] $V_{DD} = 3.3V, T_a = 25^{\circ}C, C_0 = 0pF, boot$


[Measurement circuit diagram]


They were performed with Agilent 4396B using the NPC test jig. They may vary in a measurement jig, and measurement environment.

Equivalent Capacity (CLosc) of Oscillation Circuit


[5410Ax]
$$V_{DD}$$
=3.3V, T_a =25°C, f_{OSC} =40MHz

[5410Bx]
$$V_{DD}$$
=3.3V, T_a =25°C, f_{OSC} =61.44MHz

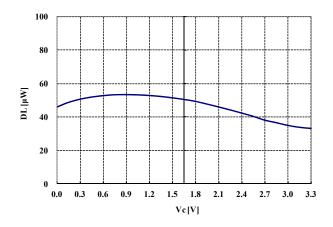
[5410C1] V_{DD} =3.3V, T_a =25°C, f_{OSC} =77.76MHz

[Measurement circuit diagram]

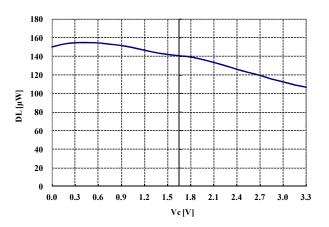
Refer to "MEASUREMENT CIRCUIT 8"

 $CLosc \\ \vdots \\ Equivalent \\ capacity \\ of oscillation \\ circuit \\ requested \\ from \\ oscillation \\ frequency \\$

$$CLosc = \frac{C_1}{\left(\frac{f_{OSC}}{fs}\right)^2 - 1} - C_1$$

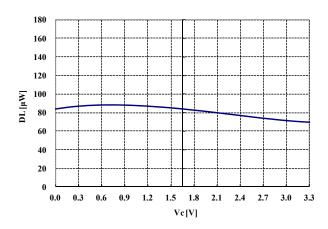

C₁: Equivalent series capacity of crystal unit

C₀: Equivalent parallel capacity of crystal unit

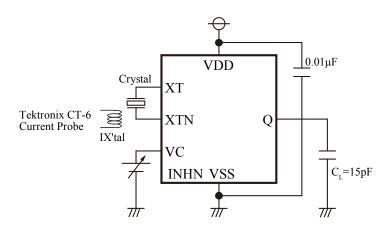

fs: Series resonating frequency of crystal unit

Drive Level

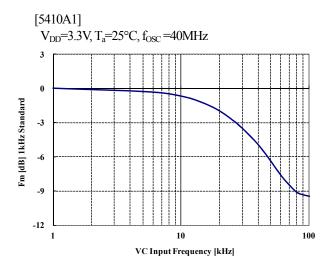
[5410Ax]
$$V_{DD}$$
=3.3V, T_a =25°C, f_{OSC} =40MHz

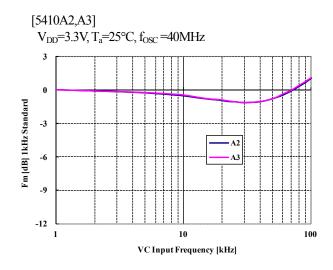


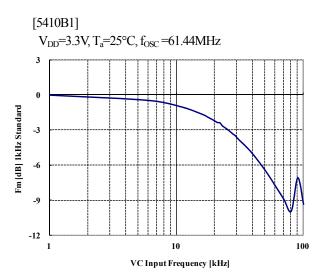
[5410Bx]
$$V_{DD}$$
=3.3V, T_a =25°C, f_{OSC} =61.44MHz

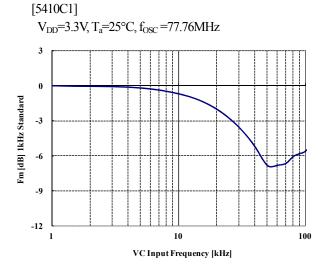


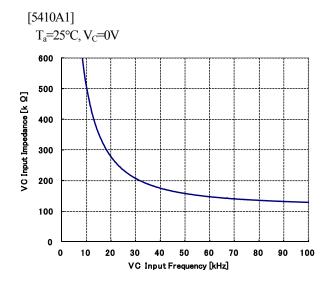
[5410C1]

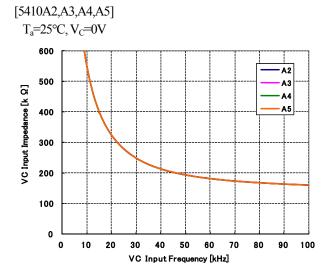

$$V_{DD}$$
=3.3V, T_a =25°C, f_{OSC} =77.76MHz

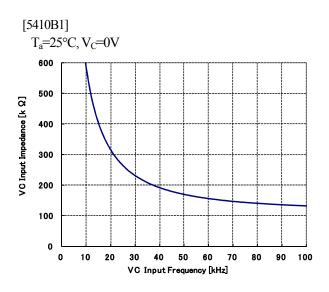


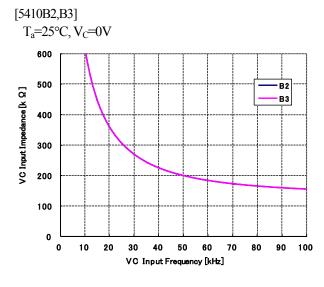

[Measurement circuit diagram]

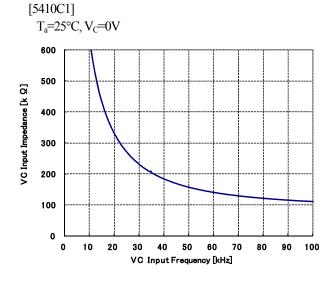

Maximum Modulation Frequency

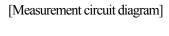


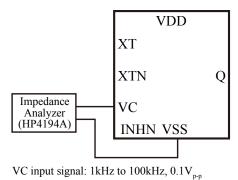


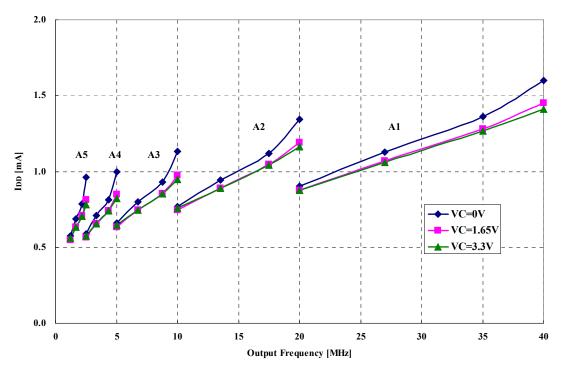


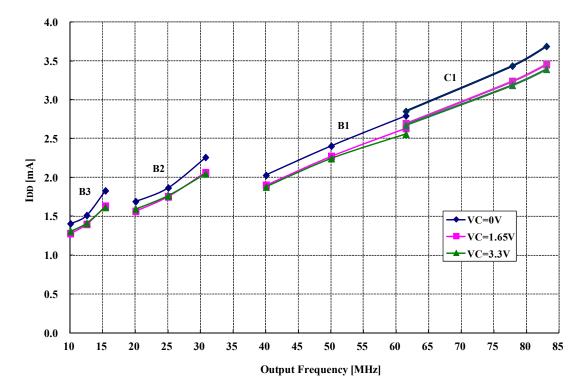

Refer to "MEASUREMENT CIRCUIT10" for measurement circuit diagram.


AC Input Impedance (VC pin)

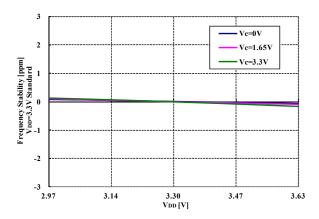


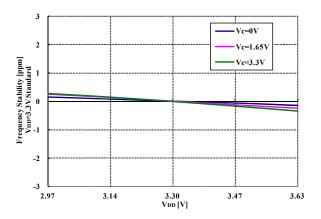




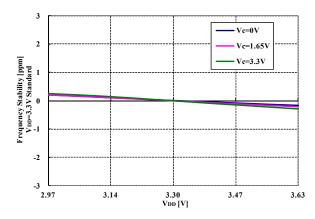


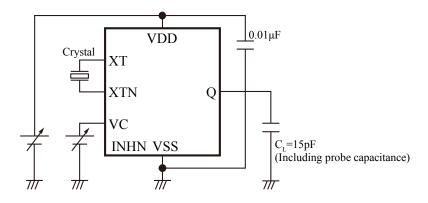
Operating Current Consumption


[5410Bx, C1] V_{DD} =3.3V, T_a =25°C

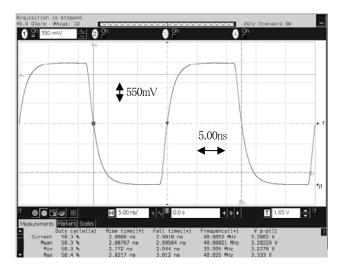

Refer to "MEASUREMENT CIRCUIT1" for measurement circuit diagram.

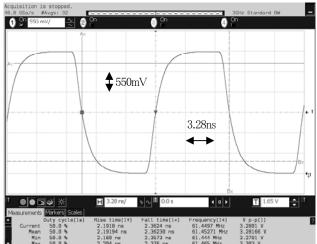
Frequency Deviation by Voltage


$$[5410Ax] V_{DD} = 3.3V, T_a = 25$$
°C, $f_{OSC} = 40$ MHz

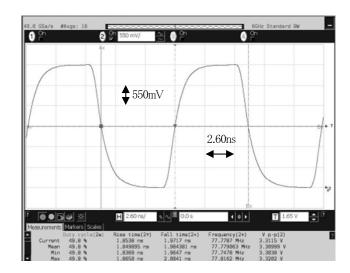

$[5410Bx]\,V_{DD}\!\!=\!\!3.3V,T_a\!\!=\!\!25^{\circ}C,f_{OSC}\!=\!\!61.44MHz$

$[5410C1] V_{DD} = 3.3V, T_a = 25^{\circ}C, f_{OSC} = 77.76 MHz$


[Measurement circuit diagram]


Output Waveform

 V_{DD} =3.3V, V_{C} =1.65V, T_{a} =25°C, C_{L} =15pF


 $[5410A1] f_{OSC} = 40MHz$

 $[5410B1] f_{OSC} = 61.44MHz$

 $[5410C1] f_{OSC} = 77.76 MHz$

Refer to "MEASUREMENT CIRCUITS" for measurement circuit diagram. Measurement equipment: Oscilloscope Agilent DSO80604B

Please pay your attention to the following points at time of using the products shown in this document.

- 1. The products shown in this document (hereinafter "Products") are designed and manufactured to the generally accepted standards of reliability as expected for use in general electronic and electrical equipment, such as personal equipment, machine tools and measurement equipment. The Products are not designed and manufactured to be used in any other special equipment requiring extremely high level of reliability and safety, such as aerospace equipment, nuclear power control equipment, medical equipment, transportation equipment, disaster prevention equipment, security equipment. The Products are not designed and manufactured to be used for the apparatus that exerts harmful influence on the human lives due to the defects, failure or malfunction of the Products. If you wish to use the Products in that apparatus, please contact our sales section in advance.
 - In the event that the Products are used in such apparatus without our prior approval, we assume no responsibility whatsoever for any damages resulting from the use of that apparatus.
- 2. NPC reserves the right to change the specifications of the Products in order to improve the characteristics or reliability thereof.
- 3. The information described in this document is presented only as a guide for using the Products. No responsibility is assumed by us for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of the third parties. Then, we assume no responsibility whatsoever for any damages resulting from that infringements.
- 4. The constant of each circuit shown in this document is described as an example, and it is not guaranteed about its value of the mass production products.
- 5. In the case of that the Products in this document falls under the foreign exchange and foreign trade control law or other applicable laws and regulations, approval of the export to be based on those laws and regulations are necessary. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

1-9-9, Hatchobori, Chuo-ku, Tokyo 104-0032, Japan Telephone: +81-3-5541-6501 Facsimile: +81-3-5541-6510 http://www.npc.co.jp/ Email:sales@npc.co.jp

ND12007-E-03 2015.07