NPC

OVERVIEW

The WF5091A is a 32.768kHz output crystal oscillator module IC with built-in frequency adjustment functions by EEPROM. The WF5091A is ideal for wide range of operating supply voltage, low current consumption, low jitter, crystal oscillator module.

FEATURES

- Oscillation and output frequency: 32.768kHz
- Wide range of operating supply voltage: 1.2 to 5.5V
- Operating temperature of oscillation operation: -40 to +85°C
- Low current consumption: 1 μ A typ. (V_{DD}=3.3V, no load)
- CMOS input / output
- ± 0.4 mA output drive capability (V_{DD}=3.3V)
- f_0 adjustment function by EEPROM (3-wire serial interface)
- Output disable function

ORDERING INFORMATION

Device	Package
WF5091A	Wafer form

PAD LAYOUT

(Unit: µm)

PIN DESCRIPTION and PAD COORDINATES

No	No. PIN I/O ^{*1}		Description		PAD coordinate [µm]	
140.	1111	UU	Lest i puòri	Х	Y	
1	VDD	-	(+) supply voltage	112.5	648.8	
2	XT	Ι	Crystal input connection pin	112.5	514.8	
3	XTN	0	Crystal output connection pin	112.5	332.2	
4	INHN (SCLK)	Ι	Input pin controlled output state (Hi-Z output at LOW, 32.768kHz output at HIGH, OPEN connection prohibit) SCLK (Clock input) pin in serial interface mode	112.5	120.5	
5	VSS	-	(-) ground	837.5	120.5	
6	VPP	-	Serial interface enable pin HIGH: serial interface mode (EEPROM read/write), LOW or OPEN: normal mode Pull-down resistor built-in	837.5	332.2	
7	Q (SDATA)	I/O	32.768kHz output pin SDATA (Data input/output) pin in serial interface mode	837.5	596.5	

*1. I/O: Input / Output pin I: Input pin O: Output pin

BLOCK DIAGRAM

SPECIFICATIONS

Absolute Maximum Ratings

Vss=0V

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage ^{*1}	V _{DD}	Between VDD and VSS	-0.3 to +6.5	V
Program supply voltage ^{*1}	V_{PP}	Between VPP and VSS	-0.3 to +22.0	V
Input voltage 1 ^{*1*2}	$V_{\mathbb{N}}$	Q pin	-0.3 to V _{DD} +0.3	V
Input voltage 2 ^{*1}	V _{IN2}	INHN pin	-0.3 to +6.5	V
Output voltage ^{*1*2}	V _{OUT}	Q pin	-0.3 to V _{DD} +0.3	V
Output current ^{*3}	I _{OUT}	Q pin	±3	mA
Junction temperature ^{*3}	Tj	-	+125	°C
EEPROM rewrite cycles ^{*3}	N _{EW}	-	100	times
Storage temperature ^{*4}	T _{STG}	-	-65 to +150	°C

*1. This parameter rating is the values that must never exceed even for a moment. This product may suffer breakdown if this parameter rating is exceeded. Operation and characteristics are guaranteed only when the product is operated at recommended operating conditions.

*2. V_{DD} is a V_{DD} value of recommended operating conditions.

*3. Do not exceed the absolute maximum ratings. If they are exceeded, a characteristic and reliability will be degraded.

*4. When stored in nitrogen or vacuum atmosphere applied to IC itself only (excluding packaging materials).

Recommended Operating Conditions

Vss=0V

Donomotor	Symbol	Symbol Conditions		Rating			
rarameter	Symbol	Conditions	MIN	ТҮР	MAX	UIII	
Operating supply voltage	V _{DD}	Between VDD and VSS ^{*1}	1.2		5.5	V	
Input voltage	$V_{\mathbb{N}}$	Input pins	V _{SS}		V _{DD}	V	
Des serves averals averals	V_{PPW}	VPP pin, EEPROM write mode $T_a=25^{\circ}C$, $V_{DD}=3.0$ to 3.6V	19.0		20.0	V	
Program supply voltage	V _{PPR}	VPP pin, EEPROM read mode $T_a=25^{\circ}C$, $V_{DD}=3.0$ to 3.6V	1.8V _{DD}		7.0	v	
Operating temperature	T _a	Condensation free	-40		+85	°C	

*1. Mount a ceramic chip capacitor that is larger than 0.1µF proximal to IC between VDD and VSS in order to obtain stable operation of WF5091A. In addition, the wiring pattern between IC and capacitor should be as wide as possible.

Note. Since it may influence the reliability if it is used out of range of recommended operating conditions, this product should be used within this range.

Electrical Characteristics DC Characteristics

Description	Similar			Rating		
Parameter	Symbol	Conditions	MIN	ТҮР	MAX	Unit
		Measurement circuit 1, CLOUT=0pF		1.0	2.0	
	т	INHN="H", V _{DD} =3.3V		1.0	2.0	
	1 _{DD1}	Measurement circuit 1, CLOUT=0pF		17	2.2	
Operating current consumption		INHN="H", V _{DD} =5.5V		1./	5.2	
Operating current consumption		Measurement circuit 2, CLOUT=15pF		27	27	μΑ
	Inne	INHN="H", V _{DD} =3.3V		2.1	5.7	
	1002	Measurement circuit 2, CLOUT=15pF		44	5.0	
		INHN="H", V _{DD} =5.5V		4.4	5.9	
Current consumption in boot	Incor	Measurement circuit 1, boot ^{*1}		15	25	
function	IBOOL	$C_{LOUT}=0$ pF, $V_{DD}=3.3$ V		1.5	2.5	μΑ
Current consumption in disable	Inc	Measurement circuit 1 INHN=I ow Vpp=3 3V		0.9	15	uА
function	DIS			0.9	1.5	μετ
	V _{OH}	Measurement circuit 4, I _{OH} =-0.4mA	Vpp-04			
High-level output voltage		$1.5V \le V_{DD} \le 5.5V$, DD 0.1			v
		Measurement circuit 4, I _{OH} =-0.1mA	Vpp-04			·
		$1.2V \le V_{DD} \le 1.5V$, DD 0.1			
	V	Measurement circuit 4, I _{OL} =0.4mA			04	v
Low-level output voltage		$1.5V \le V_{DD} \le 5.5V$			0.1	•
Low level output voluge	• OL	Measurement circuit 4, I _{OL} =0.1mA			04	V
		$1.2V \le V_{DD} \le 1.5V$			0.1	
		Measurement circuit 5, INHN pin	0.8Vpp			
High-level input voltage 1	VIII	$1.2V \le V_{DD} \le 1.5V$	0.0 1 DD			v
Tight to for hip at forming t	• 101	Measurement circuit 5, INHN pin	0.7Vpp			
		$1.5V \le V_{DD} \le 5.5V$	0.7 4 DD			
		Measurement circuit 5, INHN pin			$0.2V_{DD}$	
Low-level input voltage 1	V _{л.1}	$1.2V \le V_{DD} \le 1.5V$			0.2 7 00	v
Low level input voltage i	• 11.1	Measurement circuit 5, INHN pin			0.3Vpp	v
		$1.5V \le V_{DD} \le 5.5V$			0.0 1 00	
High-level input voltage 2	Vup	Measurement circuit 5, VPP pin, T _a =25°C	1.8Vpp			v
Thigh level hip a volage 2	• IH2	V _{DD} =3.0 to 3.6V	1.0 0 00			·
Low-level input voltage ?	Vuo	Measurement circuit 5, VPP pin, $T_a=25^{\circ}C$			13V.DD	V
2011 lever input totuge 2	• IL-2	V _{DD} =3.0 to 3.6V			1.2 , 00	·
VPP pull-down resistor	R _{pd}			100		kΩ

 V_{DD} =1.2 to 5.5V, V_{SS} =0V, T_a =-40 to +85°C, C_{LOUI} =15pF unless otherwise noted.

*1. Boot function operates from oscillation start to 0.5s (t_{sta} +0.5sec) after applying power supply.

AC Characteristics 1 (Clock Output Characteristics)

Donomoton	Symbol	Conditions		Unit			
r ar ameter	Symbol	Conditions	MIN	ТҮР	MAX	Unit	
Output duty grale	DUTV	Measurement circuit 2	45	50	55	0/	
Output duty cycle	DUTT	$1.2V \le V_{DD} \le 5.5V, V_{th} = 0.5V_{DD}$	43	50	55	70	
Output rise time	+	Measurement circuit 2			200	20	
Output lise time	۲.	$0.2V_{DD} \rightarrow 0.8V_{DD}$			200	115	
Output fall time	t .	Measurement circuit 2			200	nc	
Ouput fail time	ι _f	$0.8V_{DD} \rightarrow 0.2V_{DD}$			200	115	
Output anable delay time	ť	Measurement circuit 3			16		
Ouput enable delay time	V OE	INHN="L"→"H"			10	μs	
Output disable delay time	ť	Measurement circuit 3			16		
Ouput disable delay time	YOD	INHN="H"→"L"			10	μs	

Output switching waveform

AC Characteristics 2 (Serial Interface Characteristics)

Demonster	Symbol Conditions		Rating			
Parameter	Symbol	Conditions	MIN	ТҮР	MAX	Unit
VPP setup time	t _{ss}		1			μs
VPP hold time	t _{SH}		1			μs
VPP deselect time	t _{SDS}		1			μs
SCLK setup time	t _{CS}		1			μs
SCLK HIGH-level pulse width	t _{WH}	EEPROM write mode	20			ms
		EEPROM read mode	2			μs
SCI K I OW lawal mulaa width	4	EEPROM write mode	2			μs
SCLK LOw-level pulse width	ι_{WL}	EEPROM read mode	2			μs
SCLK rise/fall time	t _{RF}	$0.1V_{DD}$ - $0.9V_{DD}$, $0.9V_{DD}$ - $0.1V_{DD}$			100	ns
Write data setup time	t _{DS}		1			μs
Write data hold time	t _{DH}		1			μs
Read data delay time	t _{RD}	C _{LOUT} =5pF			1	μs

V_{DD}=3.0 to 3.6V, V_{SS}=0V, T_a=25°C, C_{LOUT}=5pF unless otherwise noted.

Serial interface timing chart

Note. EEPROM read/write in serial interface mode is limited to $V_{\text{DD}}{=}3.0$ to 3.6V.

FUNCTIONAL DESCRIPTION INHN Function

Q outputs 32.768kHz when INHN connects HIGH level. Q outputs Hi-Z and the oscillator circuit works when INHN connects LOW level. Oscillation does not stop. Always ensure to input V_{IL1} to INHN.

INHN	Q	Oscillator	Remarks
HIGH	32.768kHz	Operating	-
LOW	Hi-Z	Operating	-
OPEN	-	-	Prohibit

EEPROM Program Specification

Serial interface only for an EEPROM program

The WF5091A transfers data using a 3-wire serial interface only for an EEPROM. Oscillation frequency can be adjusted by setting up oscillation part capacitor using this serial interface.

EEPROM read/write in serial interface mode is limited to V_{DD} =3.0 to 3.6V.

Timing chart of serial interface

When VPP input voltage rise above V_{IH2} , the IC enters serial interface mode. In serial interface mode, INHN is the clock input (SCLK), and Q is the data input/output (SDATA).

In EEPROM write mode, VPP input voltage should be VPPW (19 to 20V), and SDATA is written in HIGH-level of SCLK.

In EEPROM read mode, VPP input voltage should be V_{PPR} (1.8 V_{DD} to 7.0V), and EEPROM data is output on the falling edge of the 5th clock pulse of SCLK.

When the VPP input voltage falls bellow VIH2 or open, normal operation resumes.*1

*1. When the VPP input voltage rises above 7V, data may be rewritten.

Serial interface bit description

(1)WE, MC

Operation mode setup

WE	MC	Operation mode	Note
0	0	EEPROM read mode	Internal EEPROM data read mode. Used to check EEPROM write status.
			Internal EEPROM data write mode.
1	0	EEPROM write mode	Unless VPP input voltage is V_{PPW} (19 to 20V), EEPROM write is not performed
			normally.
0	1	Test mode	IC test mode.
1	1	Test mode	Since this mode is the mode for IC test, use of this mode is prohibition.

Note. SCLK HIGH-level pulse width (t_{WH}) after MC bit should be over 20ms in EEPROM write mode.

(2)D1, D0

Fixed bit. "D1" and "D0" should set up "0".

(3)X

Don't care bit. "X" set up "0" or "1".

(4)C6 to C0 (C[6:0])

Capacitance setting bit for f_0 adjustment.

 C_{LOSC} increments as the code increment every 1LSB. Refer to the following table for a setup.

Bit	Fund	ction	Capacit	ance (pF)
Du	"1"	"0"	XT	XTN
C0	ON	OFF	0.14	0.14
C1	ON	OFF	0.28	0.28
C2	ON	OFF	0.56	0.56
C3	ON	OFF	1.12	1.12
C4	ON	OFF	2.24	2.24
C5	ON	OFF	4.48	4.48
C6	ON	OFF	8.96	8.96

 C_{LOSC} : Oscillator circuit equivalent load capacitance

Also oscillator circuit load capacitance 6.0pF (Max) is added between XT and XTN.

EEPROM (fo adjustment) data setting timing chart

EEPROM data is read at the following timing inside IC.

(1)Start-up

EEPROM data output timing chart (after EEPROM program operation)

Power On Clear (POC) Function

The WF5091A has a power-on-clear function.

Interval of power reapply should be more than 1s.

MEASUREMENT CIRCUITS MEASUREMENT CIRCUIT 1

Measurement Parameter: I_{DD1} , I_{BOOT} , I_{DIS}

MEASUREMENT CIRCUIT 2

Measurement Parameter: I_{DD2} , DUTY, t_r , t_f

MEASUREMENT CIRCUIT 3

Measurement Parameter: t_{OE}, t_{OD}

MEASUREMENT CIRCUIT 4

Measurement Parameter: V_{OH} , V_{OL}

MEASUREMENT CIRCUIT 5

Measurement Parameter: $V_{I\!H}\!,V_{I\!L}$

INHN, Q, VPP

MEASUREMENT CIRCUIT 6

Measurement Parameter: CLOSC

DEFAULT EEPROM WRITE CODE

Devices are shipped with these values, but this code data set is not guaranteed. The EEPROM data retention deteriorates when subjected [exposed] to UV rays, high temperatures, plasma and other extremes. Strictly observe the following USAGE NOTES.

C6	C5	C4	C3	C2	C1	C0
0	1	1	0	0	1	1

USAGE NOTES Writing All Bits in EEPROM

While NPC device EEPROM write code may be used as-is, we strongly urge that all bits in all registers be rewritten in EEPROM under the prescribed conditions at the customer's company.

Please pay your attention to the following points at time of using the products shown in this document.

1. The products shown in this document (hereinafter "Products") are designed and manufactured to the generally accepted standards of reliability as expected for use in general electronic and electrical equipment, such as personal equipment, machine tools and measurement equipment. The Products are not designed and manufactured to be used in any other special equipment requiring extremely high level of reliability and safety, such as aerospace equipment, nuclear power control equipment, medical equipment, transportation equipment, disaster prevention equipment, security equipment. The Products are not designed and manufactured to be used for the apparatus that exerts harmful influence on the human lives due to the defects, failure or malfunction of the Products. If you wish to use the Products in that apparatus, please contact our sales section in advance.

In the event that the Products are used in such apparatus without our prior approval, we assume no responsibility whatsoever for any damages resulting from the use of that apparatus.

- 2. NPC reserves the right to change the specifications of the Products in order to improve the characteristics or reliability thereof.
- 3. The information described in this document is presented only as a guide for using the Products. No responsibility is assumed by us for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of the third parties. Then, we assume no responsibility whatsoever for any damages resulting from that infringements.
- 4. The constant of each circuit shown in this document is described as an example, and it is not guaranteed about its value of the mass production products.
- 5. In the case of that the Products in this document falls under the foreign exchange and foreign trade control law or other applicable laws and regulations, approval of the export to be based on those laws and regulations are necessary. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

1-9-9, Hatchobori, Chuo-ku, Tokyo 104-0032, Japan Telephone: +81-3-5541-6501 Facsimile: +81-3-5541-6510 http://www.npc.co.jp/ Email:sales@npc.co.jp

ND13013-E-01 2013.04