NPC

OVERVIEW

The 5087 series are LVDS output oscillator ICs that operate with 300MHz to 700MHz SAW resonators. The series includes devices with $f_0/4$ frequency output (mask option), making them ideal for low frequency SAW oscillators as low as 75MHz. They are specialized for SAW oscillators, realizing smaller chip size compared to existing products. They feature low jitter, miniature LVDS output oscillator to use in high-speed serial interface applications.

FEATURES

- 2.375 to 3.6V operating supply voltage range
- Recommended oscillation frequency range: 300MHz to 700MHz (varies with version)
- Output frequency range: 75MHz to 700MHz f_{0} , $f_{0}/2$, $f_{0}/4$ output frequency, determined by internal connection
- Output rise time/Output fall time: 400ps (max)
- -40 to +85°C operating temperature range

- LVDS output
- Standby function
- Outputs are high impedance when OE is LOW. (oscillator stops)
- Power-saving pull-up resistor built-in (OE pin)
- BiCMOS process
- Wafer form (WF5087xx)
- Chip form (CF5087xx)

SERIES CONFIGURATION

Vortion ^{*1}	Recommended crystal	Recommended oscillation	Built-in capa	citance ^{*3} [pF]	Output from on a
version	unit/resonator	frequency range ^{*2} [MHz]	C _{XIN}	C _{XOUT}	Output nequency
5087A1	SAW	300 to 500	6	8	\mathbf{f}_0
5087A2					f ₀ /2
5087A3					f ₀ /4
5087B1		v			\mathbf{f}_0
5087B2		500 to 700	5	5	f ₀ /2
5087B3					$f_0/4$

*1. It becomes WF5087xx in case of the wafer form and CF5087xx in case of the chip form.

*2. The recommended oscillation frequency is a yardstick value derived from the resonator used for NPC characteristics authentication. However, the oscillation frequency range is not guaranteed. Specifically, the characteristics can vary greatly due to resonator characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

*3. The built-in oscillation capacitance contains parasitic capacitance.

ORDERING INFORMATION

Device	Package	Version name				
WF5087xx-x	Wafer form	WF5087□□−□ Form WF: Wafer form				
CF5087xx-x	Chip form	CF: Chip (Die) form CF: Chip (Die) form S:180µm Frequency divider function Oscillation frequency range				

PAD LAYOUT

(Unit: µm)

PIN DESCRIPTION and PAD COORDINATES

No	Nomo	:/o*1	Function	PAD coord	inate [µm]
190.	Iname	10	r uncuon	X	Y
1	VCC1*2	-	(1) gumphy nin (for agaillation given it)	-395	-424
2	VCC1*2	-	(+) supply pin (10) oscillation circuit/	-290	-440
3	XIN	i	Oscillator input pin	-72	-440
4	XOUT	0	Oscillator output pin	107	-440
5	GND1 ^{*3}	-	(-) ground pin (for oscillation circuit)	290	-440
6	GND2 ^{*3}	-	(-) ground pin (for all circuits excluding oscillation circuit)	395	-440
7	OE	i	Output enable pin. Outputs are high impedance when LOW	377	440
,	0E	Ĩ	(oscillator stopped). Power-saving pull-up resistor built-in.	511	110
8	VCC2 ^{*2}	-	(+) supply pin (for all airwite avaluating assolution airwit)	190	440
9	VCC2 ^{*2}	-	(1) supply pair (10) an encurs excluding oscination circuit)	85	440
10	OUTN	0	LVDS complementary output pin. Disable: High impedance	-114	440
11	OUT	0	LVDS output pin. Disable: High impedance	-380	440

*1. i: input, o: output

*2. Connect both of pins by wire-bonding for good characteristics.

*3. GND1 and GND2 pins should be connected by wire-bonding since they are disconnected.

BLOCK DIAGRAM

SPECIFICATIONS

Absolute Maximum Ratings

V_{SS}=0V

Parameter	Symbol	Condition	Rating	Unit
Supply voltage range ^{*1}	V _{CC}	VCC1, VCC2 pins	-0.3 to +5.0	V
Input voltage range ^{*1*2}	$V_{\mathbb{N}}$	XIN, OE pins	-0.3 to V _{CC} +0.3	V
Output voltage range ^{*1*2}	V _{OUT}	XOUT, OUT/OUTN pins	-0.3 to V _{CC} +0.3	V
Junction temperature ^{*3}	Tj		+125	°C
Storage temperature range ^{*4}	T _{STG}	Chip form, Wafer form	-55 to +125	°C

*1. This parameter rating is the values that must never exceed even for a moment. This product may suffer breakdown if this parameter rating is exceeded. Operation and characteristics are guaranteed only when the product is operated at recommended operating conditions.

*2. $V_{CC}\xspace$ is a $V_{CC}\xspace$ value of recommended operating conditions.

*3. Do not exceed the absolute maximum ratings. If they are exceeded, a characteristic and reliability will be degraded.

*4. When stored in nitrogen or vacuum atmosphere applied to IC itself only (excluding packaging materials).

Recommended Operating Conditions

 $V_{SS}=0V$

Devenuetor	Granhal	Conditions	Rating			Unit
rarameter	Symbol	Conduons	MIN	ТҮР	MAX	Ullit
Operating supply voltage	V	Between VCC1 and GND pins	2 275		26	V
Operating suppry voltage	V _{CC}	Between VCC2 and GND pins	2.373		5.0	v
Operating supply voltage difference	ΔV_{CC}	Voltage difference between VCC1 and VCC2 pins	-0.1		+0.1	V
Input voltage	V _{IN}	XIN, OE pins	0		V _{CC}	V
Operating temperature	T _a		-40		+85	°C
Output load	R _L	Between OUT and OUTN pins	99	100	101	Ω
One;11ation from	£	5087Ax	300		500	MIL
Oscillation frequency range	1 ₀	5087Bx	500		700	MHZ
		5087A1	300		500	
		5087A2	150		250	
Output frequency range	£	5087A3	75		125	MIL
	IOUT	5087B1	500		700	MHZ
		5087B2	250		350	
		5087B3	125		175	

*1. The oscillation frequency is a yardstick value derived from the resonator used for NPC characteristics authentication. However, the oscillation frequency range is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

Note. Since it may influence the reliability if it is used out of range of recommended operating conditions, this product should be used within this range.

Electrical Characteristics 3.3V operation

Douourstan	Granhal	Can Hitana		T Init			
Parameter	Symbol	Conditions		MIN	ТҮР	MAX	Unit
Current consumption	I _{CC}	Measurement circuit 1, OE=Open			49	70	mA
Standby current	I _{STB}	Measurement circuit 1, OE=Low				30	μΑ
High-level output voltage	V _{OH}	Measurement circuit 2, OE=Open, R _L	=100Ω		1.43	1.6	V
Low-level output voltage	V _{OL}	OUT/OUTN pins		0.9	1.1		V
Differential output voltage	V _{OD}	Measurement circuit 2, OE=Open, R _L	=100Ω	247	330	454	mV
Differential output voltage error	ΔV_{OD}	OUT/OUTN pins				50	mV
Offset voltage	V _{OS}	Measurement circuit 2, OE=Open, R _L =100Ω OUT/OUTN pins		1.125	1.25	1.375	V
Offset voltage error	ΔV_{OS}					50	mV
Output leakage current	Iz	Measurement circuit 3, SW=High or Low OE=Low, OUT/OUTN pins				10	μΑ
High-level input voltage	V _{IH}	Measurement circuit 1, OE pin		0.7V _{CC}			V
Low-level input voltage	V _{IL}	Measurement circuit 1, OE pin				0.3V _{CC}	V
High-level input current	${I_{IH}}^{*1}$	Measurement circuit 1, V _{IN} =0.7Vcc,	OE pin	-10		-70	μΑ
Low-level input current	I_{IL}^{*1}	Measurement circuit 1, V _{IN} =0V, OE	pin	-1		-15	μΑ
	0		5087Ax	1.70	2.00	2.30	
	C _{IN}	Design value (a monitor pattern on a wafer is tested), Excluding parasitic capacitance.	5087Bx	0.85	1.00	1.15	pF
Oscillation capacitors	C		5087Ax	3.40	4.00	4.60	
	COUT		5087Bx	0.85	1.00	1.15	

V_{CC} =3.0 to 3.6V, GND=0V, T_a = -40 to +85°C unless otherwise noted.

*1. A sign means the direction of current flows and the MAX value is defined as the largest absolute value.

2.5V operation

Donomotor	Symbol	Conditions			Rating		I Init
rarameter	Symbol			MIN	ТҮР	MAX	UIII
Current consumption	I _{CC}	Measurement circuit 1, OE=Open			47	68	mA
Standby current	I _{STB}	Measurement circuit 1, OE=Low				30	μΑ
High-level output voltage	V _{OH}	Measurement circuit 2, OE=Open, RL	=100Ω		1.43	1.6	V
Low-level output voltage	V _{OL}	OUT/OUTN pins		0.9	1.1		V
Differential output voltage	V _{OD}	Measurement circuit 2, OE=Open, RL	=100Ω	247	330	454	mV
Differential output voltage error	ΔV_{OD}	OUT/OUTN pins				50	mV
Offset voltage	V _{OS}	Measurement circuit 2, OE=Open, R _L =100Ω OUT/OUTN pins		1.125	1.25	1.375	V
Offset voltage error	ΔV_{OS}					50	mV
Output leakage current	Iz	Measurement circuit 3, SW=High or Low OE=Low, OUT/OUTN pins				10	μΑ
High-level input voltage	VIH	Measurement circuit 1, OE pin		0.7V _{CC}			V
Low-level input voltage	V _{IL}	Measurement circuit 1, OE pin				0.3V _{CC}	V
High-level input current	$I_{\rm IH}^{*1}$	Measurement circuit 1, V _{IN} =0.7Vcc, 0	OE pin	-10		-70	μΑ
Low-level input current	$I_{\rm IL}^{*1}$	Measurement circuit 1, V _{IN} =0V, OE J	pin	-1		-15	μΑ
	C		5087Ax	1.70	2.00	2.30	
	$C_{\mathbb{N}}$	Design value (a monitor pattern on a	5087Bx	0.85	1.00	1.15	pF
Oscillation capacitors		Excluding parasitic capacitance.	5087Ax	3.40	4.00	4.60	
	C _{OUT}		5087Bx	0.85	1.00	1.15	

V_{DD} =2.375 to 2.625V, GND=0V, T_a = -40 to +85°C unless otherwise noted.

*1. A sign means the direction of current flows and the MAX value is defined as the largest absolute value.

Switching Characteristics 3.3V operation

Doromotor	Symbol	ol Conditions		Rating		
	Symbol	Conditions	MIN	ТҮР	MAX	Unit
		Measurement circuit 4				
Output duty cycle	Duty	$T_a = +25^{\circ}C, V_{CC} = 3.3V$	45		55	%
		Measured at differential output is 0V (cross point)				
Output swing	V	Measurement circuit 4,	0.25			V
	V OPP	Peak to peak of differential output waveform	0.55			v
	t _r	Measurement circuit 4		200	400	ps
Output fise time		20% to 80% of differential output swing		290		
Output fall time	t _f	Measurement circuit 4	290		400	ps
Output fail time		80% to 20% of differential output swing			400	
		Measurement circuit 5, T_a =+25°C				
Output disable time	t _{OD}	Time to becoming output Hi-Z at OE(fall)= V_{IL}			200	ns
		(Refer to the timing chart for details.)				

$V_{DD} = 3.0 \text{ to } 3.6 \text{V}$	$GND=0VT_{a}$	$= -40 \text{ to } +85^{\circ}\text{C}$	unless otherw	ise noted
·))) J.0 W J.0 v.	01000, 10	1010 00 0	uncos outer w	ise noted

Note. The ratings are measured by using the NPC standard resonator and jig. They may vary due to resonator characteristics, so they must be carefully evaluated.

Recommended resonator characteristics: A version: R1≤20Q, C0≤3pF

B version: R1≤20Ω, C0≤2pF

2.5V operation

Donomotor	Symphol	Rating			T Init		
r ar anneter	Symbol	Conditions	MIN	ТҮР	MAX	UIII	
		Measurement circuit 4					
Output duty cycle	Duty	$T_a = +25^{\circ}C, V_{CC} = 2.5V$	45		55	%	
		Measured at differential output is 0V (cross point)					
Output swing	V	Measurement circuit 4,	0.25			V	
	V OPP	Peak to peak of differential output waveform	0.23			v	
Output rise time	t	Measurement circuit 4		200	400	nc	
Output rise time	Lr.	20% to 80% of differential output swing		290	400	ps	
Output fall time	t _f	Measurement circuit 4		200	400		
Ouput fail time		80% to 20% of differential output swing	290		400	ps	
		Measurement circuit 5, T_a =+25°C					
Output disable time	t _{OD}	Time to becoming output Hi-Z at OE(fall)= V_{IL}			200	ns	
		(Refer to the timing chart for details.)					

 $V_{DD} = 2.375$ to 2.625V, GND= 0V, $T_a = -40$ to +85°C unless otherwise noted

Note. The ratings are measured by using the NPC standard resonator and jig. They may vary due to resonator characteristics, so they must be carefully evaluated.

Recommended resonator characteristics: A version: R1 \leq 20 Ω , C0 \leq 3pF

B version: R1≤20Ω, C0≤2pF

Timing chart

*1. The OUT/OUTN output goes high impedance after the OE is fallen and then the output disable time " t_{OD} " has elapsed.

Figure 1. Timing chart

MEASUREMENT CIRCUITS

These are measurement circuits for electrical characteristics and switching characteristics.

Note: Bypass capacitors specified in each measurement circuit below should be connected between VCC and GND. Load resistance specified in each measurement circuit below should be connected to OUT and OUTN pins (excluding measurement circuit 3). Circuit wiring of bypass capacitors and load resistance should be connected as short as possible. If the circuit wiring is long, the required characteristics may not be realized. Also, if the values of bypass capacitors and load resistance differ from the description in this document or are not connected, the required characteristics may not be realized.

* The capacitor and resistor used in measurement circuits below;

GRM155F11H103Z (MURATA)	0.01µF
GRM1552C1H102JA01 (MURATA)	1000pF
RN732ATTD49R9B25 (KOA)	49.9Ω

The differential probe spec used for measurement recommends >5GHz analog bandwidth, >50k Ω impedance, and <1pF load. If common-mode noise becomes a problem, connect a capacitor between the center tap of 49.9 Ω resistance and GND. The capacitor should choose value so that impedance becomes low on the frequency of the noise which is attenuated.

MEASUREMENT CIRCUIT 1

Measurement Parameter: I_{CC} , I_{STB} , V_{IH} , V_{IL} , I_{IH} , I_{IL}

MEASUREMENT CIRCUIT 2

Measurement Parameter: $V_{OH}, V_{OL}, V_{OD}, \Delta V_{OD}, V_{OS}, \Delta V_{OS}$

MEASUREMENT CIRCUIT 3

Measurement Parameter: I_Z

MEASUREMENT CIRCUIT 4

Measurement Parameter: Duty, $V_{\text{OPP}}, t_{r}, t_{f}$

MEASUREMENT CIRCUIT 5

Measurement Parameter: toD

FUNCTIONAL DESCRIPTION

Standby Function

When OE goes LOW, the oscillator stops and the output pins (OUT, OUTN) become high impedance.

OE	OUT, OUTN	Oscillator	
HIGH (Open)	Any $f_{0,}f_{0}/2$, $f_{0}/4$ output frequency	Operating	
LOW	Hi-Z	Stopped	

Power Saving Pull-up Resistor

The OE pin pull-up resistance changes in response to the input level (HIGH or LOW). When OE is tied LOW (standby state), the pull-up resistance becomes large, reducing the current consumed by the resistance. When OE is open circuit, the pull-up resistance becomes small, decreasing the susceptibility to the effects of external noise.

Oscillation Detection Function

The 5087 series also feature an oscillation detector circuit. This circuit functions to disable the outputs until the oscillator circuit starts and the oscillation becomes stable. This alleviates the danger of abnormal oscillator output at oscillator start-up when power is applied or when OE is switched.

TYPICAL PERFORMANCE

The following characteristics measured using the NPC's standard jig and SAW resonator. Note that the characteristics will vary with the resonator used or measurement condition.

SAW resonator used for measurement	
Parameter	f ₀ =315MHz
C0(pF)	2.8
R1(Ω)	18

Current Consumption

Negative Resistance

Measurement equipment: Agilent 4396B Network Analyzer, Agilent 85046A S-parameter Test Set

Characteristics are measured with a capacitance C0, representing the resonator equivalent circuit C0 capacitance, connected between the XIN and XOUT pins. Measurement are performed with Agilent 4396B, 85046A using the NPC test jig. Characteristics may vary with measurement jig and measurement conditions.

Phase Noise

Measurement equipment: Agilent E5052B Signal Source Analyzer

Output Waveform

Measurement equipment: Agilent DSO80604B Oscilloscope, Differential probe 1134A (Probe head E2678A)

A1 version, V_{CC} =3.3V, T_a =25°C f_0 =315MHz, f_{OUT} =315MHz

A2 version, V_{CC}=3.3V, T_a=25°C f₀=315MHz, f_{OUI}=157.5MHz

Please pay your attention to the following points at time of using the products shown in this document.

1. The products shown in this document (hereinafter "Products") are designed and manufactured to the generally accepted standards of reliability as expected for use in general electronic and electrical equipment, such as personal equipment, machine tools and measurement equipment. The Products are not designed and manufactured to be used in any other special equipment requiring extremely high level of reliability and safety, such as aerospace equipment, nuclear power control equipment, medical equipment, transportation equipment, disaster prevention equipment, security equipment. The Products are not designed and manufactured to be used for the apparatus that exerts harmful influence on the human lives due to the defects, failure or malfunction of the Products. If you wish to use the Products in that apparatus, please contact our sales section in advance.

In the event that the Products are used in such apparatus without our prior approval, we assume no responsibility whatsoever for any damages resulting from the use of that apparatus.

- 2. NPC reserves the right to change the specifications of the Products in order to improve the characteristics or reliability thereof.
- 3. The information described in this document is presented only as a guide for using the Products. No responsibility is assumed by us for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of the third parties. Then, we assume no responsibility whatsoever for any damages resulting from that infringements.
- 4. The constant of each circuit shown in this document is described as an example, and it is not guaranteed about its value of the mass production products.
- 5. In the case of that the Products in this document falls under the foreign exchange and foreign trade control law or other applicable laws and regulations, approval of the export to be based on those laws and regulations are necessary. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

1-9-9, Hatchobori, Chuo-ku, Tokyo 104-0032, Japan Telephone: +81-3-5541-6501 Facsimile: +81-3-5541-6510 http://www.npc.co.jp/ Email:sales@npc.co.jp

ND12013-E-00 2012.04