NPC

OVERVIEW

The 5086 series are differential LV-PECL output oscillator ICs that operate with 300MHz to 700MHz SAW resonators. The series includes devices with fo/4 frequency output (mask option), making them ideal for low-frequency SAW oscillators as low as 75MHz. They are specialized for SAW oscillators, realizing smaller chip size compared to existing products. They feature low jitter, miniature LV-PECL output oscillator optimal to use in high-speed serial interface applications.

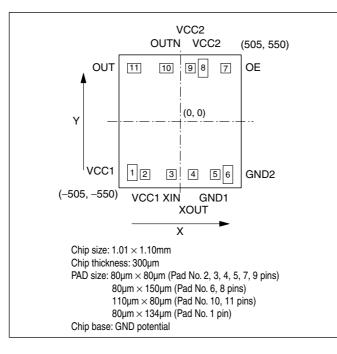
FEATURES

- 2.375 to 3.6V operating supply voltage range
- Recommended oscillation frequency range: 300MHz to 700MHz (varies with version)
- Output frequency range: 75MHz to 700MHz
 f_O, f_O/2, f_O/4 output frequency, determined by internal connection
- Output rise time/ Output fall time: 400ps (max)
- Low jitter (RMS jitter, 12kHz to 20MHz): 0.3ps (5086A2, $f_0 = 312.5$ MHz, $f_{OUT} = 156.25$ MHz, $V_{CC} = 3.3$ V, typ)
- -40 to $+85^{\circ}$ C operating temperature range
- Differential LV-PECL output
- 50 Ω output load (terminated to V_{CC} 2V)
- Standby function
 - Outputs are high impedance when OE is LOW. (oscillator stops)
- Power-saving pull-up resistor built-in (pin OE)
- BiCMOS process
- Chip form (CF5086××)

Version	Recommended crystal	Recommended oscillation	Built-in ca	- Output frequency	
Version	unit/ resonator	frequency range ^{*1} [MHz]	C _{XIN}	C _{XOUT}	
5086A1					f _O
5086A2		300 to 500	6	8	f _O /2
5086A3	SAW				f _O /4
5086B1	JAW				f _O
5086B2		500 to 700	5	5	f _O /2
5086B3					f _O /4

*1. The recommended oscillation frequency is a yardstick value derived from the resonator used for NPC characteristics authentication. However, the oscillator frequency band is not guaranteed. Specifically, the characteristics can vary greatly due to resonator characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

*2. The oscillator internal capacitance values includes parasitic capacitance.


ORDERING INFORMATION

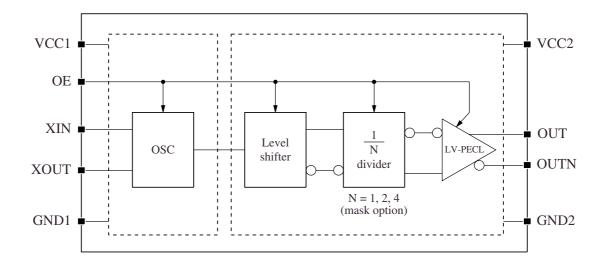
Device	Package	Version name
CF5086××-1	Chip form	CF5086□□ - 1 Form CF: Chip (Die) form

SERIES CONFIGURATION

PAD LAYOUT

(Unit: µm)

PIN DESCRIPTION and PAD DIMENSIONS


Pad No.	Name	I/O ^{*1}	Function	Pad dimen	sions [µm]
Pau NO.	Name	1/0	Function	X	Y
1	VCC1 ^{*2}	-		-395	-424
2	VCC1 ^{*2}	-	(+) supply pin (for oscillation circuit)	-290	-440
3	XIN	I	Oscillator input pin	-72	-440
4	XOUT	0	Oscillator output pin	107	-440
5	GND1 ^{*3}	-	(-) ground pin (for oscillation circuit)	290	-440
6	GND2 ^{*3}	-	(-) ground pin (for all circuits excluding oscillation circuit)	395	-440
7	OE	I	Output enable pin. Outputs are high impedance when LOW (oscillator stopped). Power-saving pull-up resistor built-in.	377	440
8	VCC2 ^{*2}	-		190	440
9	VCC2*2	-	(+) output buffer supply pin (for all circuits excluding oscillation circuit)	85	440
10	OUTN	0	Complementary output pin. Disable: High impedance	-114	440
11	OUT	0	Output pin. Disable: High impedance	-380	440

*1. I: input, O: output

*2. Connect both of pins by wire-bonding for good characteristics.*3. GND1 and GND2 pins should be connected by wire-bonding since they are disconnected.

5086 series

BLOCK DIAGRAM

SPECIFICATIONS

Absolute Maximum Ratings

GND = 0V unless otherwise noted.

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage range ^{*1}	V _{CC}	VCC1, VCC2 pins	-0.3 to +5.0	V
Input voltage range*1 *2	V _{IN}	XIN, OE pins	-0.3 to V _{CC} + 0.3	V
Output voltage range ^{*1 *2}	V _{OUT}	XOUT, OUT/OUTN pins	-0.3 to V _{CC} + 0.3	V
Junction temperature ^{*3}	Тj		+125	°C
Storage temperature range*4	T _{STG}	Chip form	-55 to +125	°C

*1. This parameter rating is the values that must never exceed even for a moment. This product may suffer breakdown if this parameter rating is exceeded. Operation and characteristics are guaranteed only when the product is operated at recommended operating conditions.

*2. V_{CC} is a V_{CC} value of recommended operating conditions.

*3. The device may be deteriorated the characteristics or reliability if this parameter rating is exceeded.

*4. When stored in nitrogen or vacuum atmosphere applied to IC itself only (excluding packaging materials).

Recommended Operating Conditions

GND = 0V unless otherwise noted.

Parameter	Symbol Conditions –			Unit		
Falameter			Min	Тур	Мах	Unit
Operating supply voltage	V _{CC}	Between VCC1 and GND pins, Between VCC2 and GND pins	2.375	-	3.6	V
Operating supply voltage difference	ΔV_{CC}	Voltage difference between VCC1 and VCC2 pins	-0.1	-	+0.1	V
Input voltage	V _{IN}	XIN, OE pins	0	-	V _{CC}	V
Operating temperature	T _a		-40	-	+85	°C
Output load	RL	Terminated to V _{CC} – 2V	49.5	50	50.5	Ω
Output frequency ^{*1}	f _{оит}		75	-	700	MHz

*1. Output frequency varies by version. Refer to "SERIES CONFIGURATION".

Note. Since it may influence the reliability if it is used out of range of recommended operating conditions, this product should be used within this range.

Electrical Characteristics

3.3V operation

 V_{CC} = 3.0 to 3.6V, GND = 0V, T_a = -40 to +85°C unless otherwise noted.

Devementer	Cumhol	Conditions			Rating		Unit
Parameter	Symbol	Con	Conditions		Тур	Max	Unit
Current consumption	I _{CC}	Measurement cct. 1, OE =	open	-	74	97	mA
Standby current	I _{STB}	Measurement cct. 1, OE =	LOW	-	-	30	μA
			$T_a = 0$ to +85°C	2.275	2.350	2.420	V
HIGH-level output voltage	V _{OH}	Measurement cct. 2,	$T_a = -40^{\circ}C \text{ to } 0^{\circ}C$	2.215	2.295	2.420	V
		V _{CC} = 3.3V, OE = open, OUT/OUTN pins	$T_a = 0$ to +85°C	1.490	1.600	1.680	V
LOW-level output voltage	V _{OL}		$T_a = -40^{\circ}C \text{ to } 0^{\circ}C$	1.470	1.605	1.745	V
Output leakage current	١ _z	Measurement cct. 3, SW1 = OUT/OUTN pins	Measurement cct. 3, SW1 = HIGH or LOW, OE = LOW, OUT/OUTN pins		_	10	μA
HIGH-level input voltage	V _{IH}	Measurement cct. 1, OE pi	n	0.7V _{CC}	_	_	V
LOW-level input voltage	V _{IL}	Measurement cct. 1, OE pin		-	-	0.3V _{CC}	V
HIGH-level input current	I _{IH}	Measurement cct. 1, V_{IN} = 0.7 V_{CC} , OE pin		-10	-	-70	μA
LOW-level input current	IIL	Measurement cct. 1, $V_{IN} =$	0V, OE pin	-1	-	-15	μA

2.5V operation

 V_{CC} = 2.375 to 2.625V, GND = 0V, T_a = -40 to +85°C unless otherwise noted.

Parameter	Symbol	Conditions			Rating		Unit
Falameter	Symbol			Min	Тур	Max	Unit
Current consumption	I _{CC}	Measurement cct. 1, OE =	open	-	72	94	mA
Standby current	I _{STB}	Measurement cct. 1, OE =	LOW	-	-	30	μA
	N		$T_a = 0$ to +85°C	1.475	1.550	1.760	V
HIGH-level output voltage	V _{OH}	Measurement cct. 2,	$T_a = -40^{\circ}C$ to $0^{\circ}C$	1.415	1.495	1.620	V
	N	V _{CC} = 2.5V, OE = open, OUT/OUTN pins	$T_a = 0$ to +85°C	0.690	0.800	1.095	V
LOW-level output voltage	V _{OL}		$T_a = -40^{\circ}C$ to $0^{\circ}C$	0.670	0.805	1.195	V
Output leakage current	Ι _Ζ	Measurement cct. 3, SW1 = OUT/OUTN pins	HIGH or LOW, OE = LOW,	-	-	10	μA
HIGH-level input voltage	V _{IH}	Measurement cct. 1, OE pir	1	0.7V _{CC}	-	-	V
LOW-level input voltage	V _{IL}	Measurement cct. 1, OE pin		-	-	0.3V _{CC}	V
HIGH-level input current	I _{IH}	Measurement cct. 1, V_{IN} = 0.7 V_{CC} , OE pin		-10	-	-70	μA
LOW-level input current	IIL	Measurement cct. 1, V _{IN} =	DV, OE pin	-1	-	-15	μA

Switching Characteristics

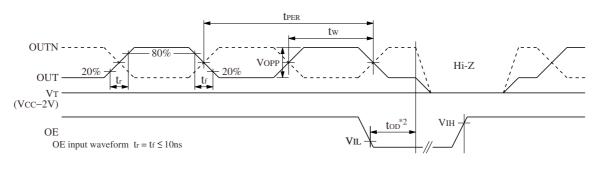
3.3V operation

 V_{CC} = 3.0 to 3.6V, GND = 0V, T_a = -40 to +85°C unless otherwise noted.

Devemeter	Cumhol	Conditions			Rating		Unit
Parameter	Symbol	Conditions	Conditions		Тур	Max	Unit
Output duty cycle 1	Duty1	Measurement cct. 4, measured at output $T_a = +25^{\circ}C$, $V_{CC} = 3.3V$	crossing point,	45	-	55	%
	Dutra	Measurement cct. 4, measured at 50% output swing, $T_a = +25^{\circ}C$, $V_{CC} = 3.3V$	5086×2, 5086×3	45	-	55	%
Output duty cycle 2	Duty2		5086×1	40	-	60	%
Output swing	V _{OPP}	Measurement cct. 4, Peak to peak of sing	gle output waveform	0.4	-	-	V
Output rise time	t _r	Measurement cct. 4, 20 to 80% output sv	ving	-	250	400	ps
Output fall time	t _f	Measurement cct. 4, 80 to 20% output swing		-	250	400	ps
Output disable time	t _{OD}	Measurement cct. 5, $T_a = +25^{\circ}C$ (refer to "Timing chart" on page 7 for more information.)		-	-	200	ns

Note. The ratings are measured by using the NPC standard resonator and jig. They may vary due to resonator characteristics, so they must be carefully evaluated.

Recommended resonator characteristics: A version: R1 \leq 20 $\Omega,$ C0 \leq 3pF B version: R1 \leq 20 $\Omega,$ C0 \leq 2pF


2.5V operation

 V_{CC} = 2.375 to 2.625V, GND = 0V, T_a = -40 to +85°C unless otherwise noted.

Parameter	Symbol	Conditions			Rating		Unit
Parameter	Symbol	Conditions	Conditions		Тур	Max	Unit
Output duty cycle 1	Duty1	Measurement cct. 4, measured at output $T_a = +25^{\circ}C$, $V_{CC} = 2.5V$	crossing point,	45	-	55	%
Output duty cycle 2	Duty	y2 Measurement cct. 4, measured at 50% output swing, $T_a = +25^{\circ}C$, V _{CC} = 2.5V	5086×2, 5086×3	45	-	55	%
	Duty2		5086×1	40	-	60	%
Output swing	V _{OPP}	Measurement cct. 4, Peak to peak of sing	gle output waveform	0.2	-	-	V
Output rise time	t _r	Measurement cct. 4, 20 to 80% output sv	ving	-	250	400	ps
Output fall time	t _f	Measurement cct. 4, 80 to 20% output swing		-	250	400	ps
Output disable time	t _{OD}	Measurement cct. 5, $T_a = +25^{\circ}C$ (refer to "Timing chart" below for more inf	, , , , , , , , , , , , , , , , , , , ,		-	200	ns

Note. The ratings are measured by using the NPC standard resonator and jig. They may vary due to resonator characteristics, so they must be carefully evaluated.

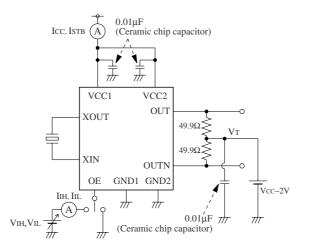
 $\begin{array}{l} \mbox{Recommended resonator characteristics: A version: } R1 \leq 20\Omega, \mbox{C0} \leq 3pF \\ \mbox{B version: } R1 \leq 20\Omega, \mbox{C0} \leq 2pF \\ \end{array}$

 $\begin{array}{l} DUTY1=t_W\!/t_{PER} \times 100 \ (\%) \ @ \ crossing \ point \\ DUTY2=t_W\!/t_{PER} \times 100 \ (\%) \ @ \ 50\% \ waveform \end{array}$

*2. The OUT/OUTN output goes high impedance after the OE is fallen and then the output disable time "t_{OD}" has elapsed. The output signal is pulled down to V_T (terminated voltage) by load resistance.

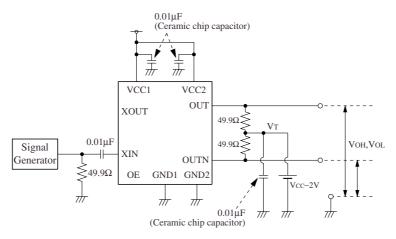
Timing chart

MEASUREMENT CIRCUITS


 Note: Bypass capacitors specified in each measurement circuit below should be connected between VCC and GND, and V_T and GND. Load resistance specified in each measurement circuit below should be connected to OUT and OUTN pins (excluding measurement circuit 3).

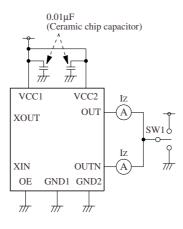
Circuit wiring of bypass capacitors and load resistance should be connected as short as possible. If the circuit wiring is long, the required characteristics may not be realized. Also, if the values of bypass capacitors and load resistance differ from the description in this document or are not connected, the required characteristics may not be realized.

* The capacitor and resistor used in measurement circuits below; GRM155F11H103Z (MURATA) 0.01μF RN732ATTD49R9B25 (KOA) 49.9Ω

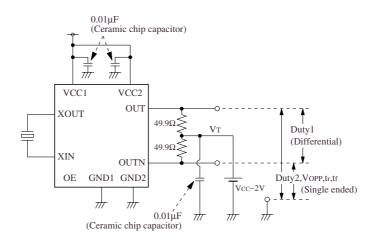

Measurement Circuit 1

Measurement parameter: I_{CC} , I_{STB} , I_{IH} , I_{IL} , V_{IH} , V_{IL}

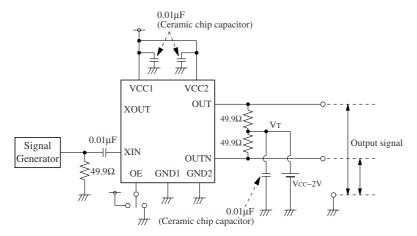
Measurement Circuit 2

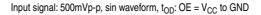

Measurement parameter: V_{OH}, V_{OL}

Input signal: 500mVp-p, sin waveform, 10MHz to 40MHz


Measurement Circuit 3

Measurement parameter: I_Z


Measurement Circuit 4


Measurement parameter: Duty1, Duty2, V_{OPP} , t_r , t_f

Measurement Circuit 5

Measurement parameter: toD

FUNCTIONAL DESCRIPTION

Standby Function

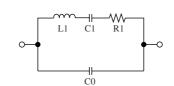
When OE goes LOW, the oscillator stops and the output pins (OUT, OUTN) become high impedance.

OE	OUT, OUTN	Oscillator
HIGH (or open)	Any f_O , $f_O/2$ or $f_O/4$ output frequency	Normal operation
LOW	High impedance	Stopped

Power-saving Pull-up Resistor

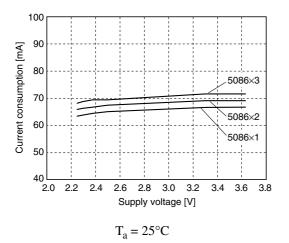
The OE pin pull-up resistance changes in response to the input level (HIGH or LOW). When OE is tied LOW (standby state), the pull-up resistance becomes large, reducing the current consumed by the resistance. When OE is open circuit, the pull-up resistance becomes small, decreasing the susceptibility to the effects of external noise.

Oscillation Detector Function

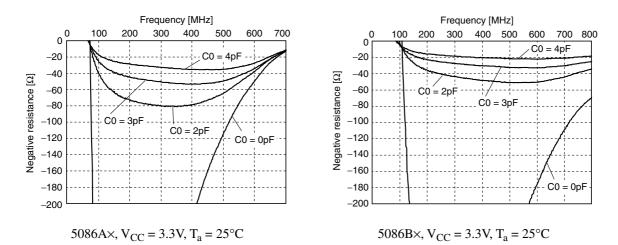

The 5086 series also feature an oscillation detector circuit. This circuit functions to disable the outputs until the oscillator circuit starts and oscillation becomes stable. This alleviates the danger of abnormal oscillator output at oscillator start-up when power is applied or when OE is switched.

TYPICAL PERFORMANCE

The following characteristics measured using the NPC's standard jig and SAW resonator. Note that the characteristics will vary with the resonator used or measurement condition.

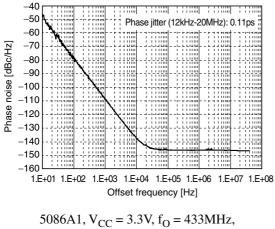

■ SAW resonator used for measurement

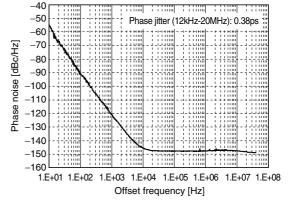
Parameter	f _O = 433MHz
C0 [pF]	2.3
R1 [Ω]	25


■ SAW resonator parameters

Current Consumption

Negative Resistance


Measurement equipment: Agilent 4396B Network Analyzer, Agilent 85046A S-parameter Test Set


Characteristics are measured with a capacitance C0, representing the resonator equivalent circuit C0 capacitance, connected between the XIN and XOUT pins. Measurements are performed with Agilent 4396B, 85046A using the NPC test jig. Characteristics may vary with measurement jig and measurement conditions.

Phase Noise

Measurement equipment: Agilent E5052B Signal Source Analyzer

 $f_{OUT} = 433 MHz, T_a = 25^{\circ}C$

5086A3, V_{CC} = 3.3V, f_{O} = 433MHz, f_{OUT} = 108.25MHz, T_{a} = 25°C

Output Waveform

Measurement equipment: Agilent DSO80604B Oscilloscope

5086A3, V_{CC} = 3.3V, f_{O} = 433MHz, f_{OUT} = 108.25MHz, T_{a} = 25°C

Please pay your attention to the following points at time of using the products shown in this document.

1. The products shown in this document (hereinafter "Products") are designed and manufactured to the generally accepted standards of reliability as expected for use in general electronic and electrical equipment, such as personal equipment, machine tools and measurement equipment. The Products are not designed and manufactured to be used in any other special equipment requiring extremely high level of reliability and safety, such as aerospace equipment, nuclear power control equipment, medical equipment, transportation equipment, disaster prevention equipment, security equipment. The Products are not designed and manufactured to be used for the apparatus that exerts harmful influence on the human lives due to the defects, failure or malfunction of the Products. If you wish to use the Products in that apparatus, please contact our sales section in advance.

In the event that the Products are used in such apparatus without our prior approval, we assume no responsibility whatsoever for any damages resulting from the use of that apparatus.

- 2. NPC reserves the right to change the specifications of the Products in order to improve the characteristics or reliability thereof.
- 3. The information described in this document is presented only as a guide for using the Products. No responsibility is assumed by us for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of the third parties. Then, we assume no responsibility whatsoever for any damages resulting from that infringements.
- 4. The constant of each circuit shown in this document is described as an example, and it is not guaranteed about its value of the massproduction products.
- 5. In the case of that the Products in this document falls under the foreign exchange and foreign trade control law or other applicable laws and regulations, approval of the export to be based on those laws and regulations are necessary. Customers are requested appropriately take steps to obtain required permissions or approvals form appropriate government agencies.

NC1001AE 2011.03