NPC

OVERVIEW

The 5077 series are LV-PECL output VCXO ICs that provide a wide frequency pulling range. They employ bipolar oscillator circuit and recently developed varicap diode fabrication process that provides a low phase noise characteristic and a wide frequency pulling range without any external components. The 5077 series are ideal for wide pulling range, low phase noise, VCXO modules.

FEATURES

- VCXO with recently developed varicap diode built-in
- Oscillator: Fundamental frequency oscillation
- Output frequency: 30 to 170MHz
- Operating supply voltage range: 2.97 to 3.63V
- Oscillator frequency range (for fundamental oscillation):

60 to 100MHz (Ax version) 100 to 170MHz (Bx version)

- Selectable by version: f_{OSC} , f_{OSC} /2
 - Output enable (OE) active selectable function
 Selectable Hi-Active or Low-Active by bonding wire

-40 to +85°C operating temperature range

Differential LV-PECL output

Frequency divider built-in

• Wide frequency pulling range (typ)

 $(\pm 150 \text{ppm})$ @A1 version, V_C=1.65 \pm 1.65V, f=77.76MHz (γ =356, C0=3.0pF)

- ± 130 ppm@B1 version, V_C=1.65 ± 1.65 V, f=155.52MHz (γ =327, C0=1.4pF)
- Low phase noise (typ) : (-130dBc/Hz)@A1 version, 1kHz Offset, f=77.76MHz (γ=356, C0=3.0pF)

(-148dBc/Hz)@A1 version, 10MHz Offset, f=77.76MHz

-125dBc/Hz@B1 version, 1kHz Offset, f=155.52MHz (y=327, C0=1.4pF)

-148dBc/Hz@B1 version, 10MHz Offset, f=155.52MHz

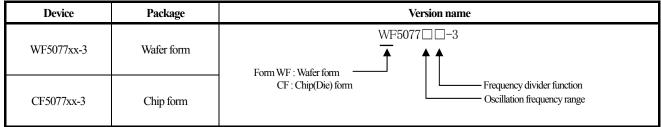
APPLICATIONS

SONET/SDH, Ethernet, Fibre Channel

SERIES CONFIGURATION

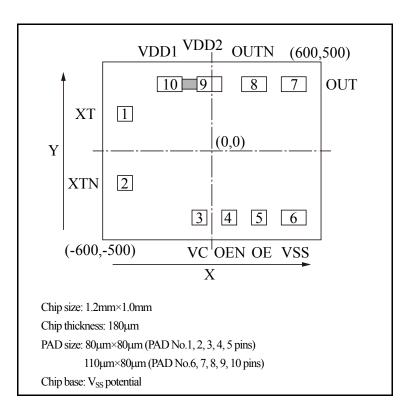
Version Name ^{*1}	Recommended operating frequency range $(f_{OSC})^{*2}$ [MHz]	Output frequency (f _{OUT})
(5077A1)	60MHz to 100MHz	f_{OSC}
(5077A2)	60MHz to 100MHz	$f_{OSC}/2$
5077B1	100MHz to 170MHz	f_{OSC}
(5077B2)	100MHz to 170MHz	$f_{OSC}/2$

*1. The version name with parentheses is being developed.


*2. The recommended oscillation frequency is a yardstick value derived from the resonator used for NPC characteristics authentication. However, the oscillation frequency range is not guaranteed. Specifically, the characteristics can vary greatly due to resonator characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

The recommended characteristics for the crystal element are:

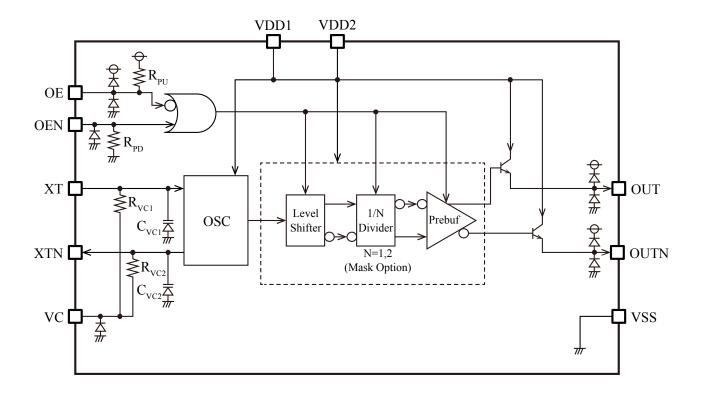
Ax versions: $R1 < 20\Omega$, C0 < 1.5pF


Bx versions: R1 < 20 Ω , C0 < 1.5pF

ORDERING INFORMATION

PAD LAYOUT

(Unit: µm)


PIN DESCRIPTION and PAD COORDINATES

No.	Pin	I/O*1	Description	Pad Coordinat	es (Unit:μm)
110.	1 111	1/0	Description	X	Y
1	XT	Ι	Crystal connection pin	-490	206.6
2	XTN	0	Crystar connection pur	-490	-110.2
3	VC	Ι	Control voltage input pin	-54.8	-390
4	OEN	Ι	Output enable input pin (built-in pull-down resistor)	127.8	-390
5	OE	Ι	Output enable input pin (built-in pull-up resistor)	291.2	-390
6	VSS	-	(-) ground	475	-390
7	OUT	0	Clock output pin (differential output)	459	390
8	OUTN	0	Clock output pin (differential reversing output)	229.2	390
9	VDD2 ^{*2}	-	(+) supply voltage for output buffer	35.8	390
10	VDD1 ^{*2}	-	(+) supply voltage	-122.5	390

*1.I: input, O: output

*2. It recommends to do wire bonding each voltage pin of package though VDD1 and VDD2 are connected by wire in the chip.

BLOCK DIAGRAM

SPECIFICATIONS

Absolute Maximum Ratings

V_{SS}=0V

Parameter	Symbol	Condition	Rating	Unit
Supply voltage range ^{*1}	V _{DD}	VDD1, VDD2 pins	-0.3 to +5.0	V
Input voltage range ^{*1*2}	V _{IN}	XT, OE, OEN, VC pins	-0.3 to V _{DD} +0.3	V
Output voltage range ^{*1*2}	V _{OUT}	XTN, OUT, OUTN pins	-0.3 to V _{DD} +0.3	V
Junction temperature ^{*3}	Tj		+125	°C
Storage temperature range ^{*4}	T _{STG}	Wafer, Chip form	-55 to +125	°C

*1. This parameter rating is the values that must never exceed even for a moment. This product may suffer breakdown if this parameter rating is exceeded. Operation and characteristics are guaranteed only when the product is operated at recommended operating conditions.

*2. V_{DD} is a V_{DD} value of recommended operating conditions.

*3. Do not exceed the absolute maximum ratings. If they are exceeded, a characteristic and reliability will be degraded.

*4. When stored in nitrogen or vacuum atmosphere applied to IC itself only (excluding packaging materials).

Recommended Operating Conditions

 $V_{SS}=0V$

Demonster	Grandral	Symbol Conditions		Rating		
Parameter	Symbol	Conditions	MIN	ТҮР	MAX	Unit
Operating supply voltage	V _{DD}	Between VDD1, VDD2 and VSS pins*2	2.97	3.3	3.63	V
Input voltage	$V_{\mathbb{N}}$	OE, OEN, VC pins	0		V _{DD}	V
Operating temperature	T _a		-40		+85	°C
Output load	R _L	Terminated to V _{DD} -2V	49.5	50.0	50.5	Ω
Oscillator frequency range ^{*1}	C	5077Ax	60		100	MHz
Oscillator frequency range	f _{OSC}	5077Bx	100		170	MIL
		5077A1	60		100	
Output frequency range	$\mathbf{f}_{\mathrm{OUT}}$	5077A2	30		50	MII-
		5077B1	100		170	MHz
		5077B2	50		85	

*1. The oscillation frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillation frequency range is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

*2. Mount a ceramic chip capacitor that is larger than 0.01µF proximal to IC (within approximately 3mm) between VDD1, VDD2 and VSS in order to obtain stable operation of 5077 series. In addition, the wiring pattern between IC and capacitor should be as wide as possible.

Note. Since it may influence the reliability if it is used out of range of recommended operating conditions, this product should be used within this range.

Electrical Characteristics A1, A2 version

Deveryoter	Symbol	Conditions			Rating		Unit
Parameter	Symbol	Conditions		MIN	ТҮР	MAX	Umt
Current consumption1	I _{DD1}	measurement circuit 1, terminated to V _E OE,OEN=Open	measurement circuit 1, terminated to V _{DD} -2V, OE,OEN=Open		59	80	mA
Current consumption2	I _{DD2}	measurement circuit 1, terminated to V _E OE=Low or OEN=High oscillator: operating, output: stopped	_D -2V,		1.2	2.5	mA
High-level output voltage	V	measurement circuit 2, T	a=0 to +85°C	2.275	2.350	2.420	v
(DC level)	V _{OH}	V _{DD} =3.3V, OUT/OUTN pins	C _a =-40 to 0°C	2.215	2.295	2.420	v
Low-level output voltage	N/	measurement circuit 2, T	a=0 to +85°C	1.490	1.600	1.680	N7
(DC level)	V _{OL}	V _{DD} =3.3V, OUT/OUTN pins	C _a =-40 to 0°C	1.490	1.605	1.745	V
Output leakage current	IZ	measurement circuit 4, SW1,2=High or Low OE=Low or OEN=High OUT/OUTN pins, T _a =25°C		-1		1	μΑ
High-level input voltage	V _{IH}	measurement circuit 3, OE/OEN pins		$0.7V_{DD}$			V
Low-level input voltage	VIL	measurement circuit 3, OE/OEN pins				0.3V _{DD}	V
Pull-up resistance	R _{PU}	measurement circuit 3, OE pin		50	100	200	kΩ
Pull-down resistance	R _{PD}	measurement circuit 3, OEN pin		50	100	200	kΩ
Oscillator block built-in	R _{VC1}	Between VC and XT, measurement circ	cuit 5	100	200	300	kΩ
resistance	R _{VC2}	Between VC and XTN, measurement c	ircuit 5	100	200	300	KS 2
Input leakage resistance	R_{VIN}	VC pin, T _a =25°C, measurement circuit	6	10			MΩ
		Design value (a monitor pattern on a	$V_{\rm C}=0.3V$	5.88	6.53	7.18	
	C _{VC1}	wafer is tested), Excluding parasitic	V _C =1.65V	3.51	4.13	4.75	pF
Oscillator block built-in		capacitance.	V _C =3.0V	1.80	2.25	2.70	
capacitance		Design value (a monitor pattern on a	V _C =0.3V	8.82	9.80	10.78	
C _{VC2}	wafer is tested), Excluding parasitic	V _C =1.65V	5.27	6.20	7.13	pF	
		capacitance.	V _C =3.0V	2.70	3.38	4.06	
Maximum modulation frequency	F _M	-3dB frequency, $T_a=25^{\circ}$ C, design value $V_{DD}=3.3$ V, $V_C=1.65$ V ± 1.65 V, measurement circuit 9, Crystal : 77.76M	IHz	20	40		kHz

V_{DD} =2.97 to 3.63V, V_C =0.5 V_{DD} , V_{SS} =0V, T_a = -40 to +85°C unless otherwise noted.

B1, B2 version

Demonstern	S-mult al	Carritteres			Rating			
Parameter	Symbol	Conditions		MIN	ТҮР	MAX	Unit	
Current consumption1	I _{DD1}	measurement circuit 1, terminated to V_E OE,OEN=Open	measurement circuit 1, terminated to V _{DD} -2V, OE,OEN=Open		60	80	mA	
Current consumption2	I _{DD2}	measurement circuit 1, terminated to V _E OE=Low or OEN=High oscillator: operating, output: stopped	_{DD} -2V,		2.3	3.5	mA	
High-level output voltage	N/	measurement circuit 2, T	a=0 to +85°C	2.275	2.350	2.420	V	
(DC level)	V _{OH}	V_{DD} =3.3V, OUT/OUTN pins T_a =	C _a =-40 to 0°C	2.215	2.295	2.420	V	
Low-level output voltage		measurement circuit 2, T	a=0 to +85°C	1.490	1.600	1.680	• •	
(DC level)	V _{OL}	V _{DD} =3.3V, OUT/OUTN pins	G _a =-40 to 0°C	1.490	1.605	1.745	V	
Output leakage current	Iz	measurement circuit 4, SW1,2=High or Low OE=Low or OEN=High OUT/OUTN pins, T _a =25°C		-1		1	μΑ	
High-level input voltage	VIH	measurement circuit 3, OE/OEN pins		0.7V _{DD}			V	
Low-level input voltage	V _{IL}	measurement circuit 3, OE/OEN pins				0.3V _{DD}	V	
Pull-up resistance	R _{PU}	measurement circuit 3, OE pin		50	100	200	kΩ	
Pull-down resistance	R _{PD}	measurement circuit 3, OEN pin	measurement circuit 3, OEN pin		100	200	kΩ	
Oscillator block built-in	R _{VC1}	Between VC and XT, measurement circ	cuit 5	100	200	300	1-0	
resistance	R _{VC2}	Between VC and XTN, measurement c	ircuit 5	100	200	300	kΩ	
Input leakage resistance	R _{VIN}	VC pin, T _a =25°C, measurement circuit	6	10			MΩ	
		Design value (a monitor pattern on a	$V_{\rm C}=0.3V$	3.92	4.36	4.80		
	C _{VC1}	wafer is tested), Excluding parasitic	V _C =1.65V	2.35	2.76	3.17	pF	
Oscillator block built-in		capacitance.	V _C =3.0V	1.20	1.50	1.80	1	
capacitance		Design value (a monitor pattern on a	V _C =0.3V	5.88	6.53	7.18		
	C _{VC2}	wafer is tested), Excluding parasitic	V _C =1.65V	3.51	4.13	4.75	pF	
		capacitance. $V_{\rm C}=3$		1.80	2.25	2.70		
Maximum modulation frequency	F _M	-3dB frequency, T _a =25°C, design value V _{DD} =3.3V, V _C =1.65V±1.65V, measurement circuit 9, Crystal : 155.52N	MHz	20	40		kHz	

 V_{DD} =2.97 to 3.63V, V_C =0.5 V_{DD} , V_{SS} =0V, T_a = -40 to +85°C unless otherwise noted.

Switching Characteristics A1, A2 version

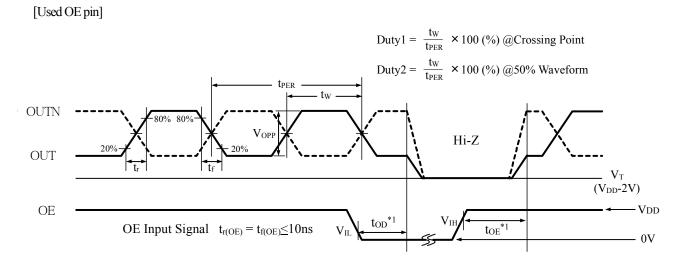
Parameter	Symbol Conditions -		Rating			Unit
r ar anneter	Symbol	Conditions	MIN	ТҮР	MAX	Uiit
	Du4:1	Measured at output cross point	45	50	55	%
Duty cycle	Duty1	$T_a=25$ °C, $V_{DD}=3.3$ V, measurement circuit 7	43	50	55	70
Duty Cycle	Duty2	Measured at 50% of output amplitude	45	50	55	%
	Duty2	$T_a=25$ °C, $V_{DD}=3.3$ V, measurement circuit 7	43	50	55	/0
Output amplitude	V _{OPP}	Peak to peak of output waveform	0.4			v
Ouiput amplitude	V OPP	Single-ended output signal, measurement circuit 7	0.4			v
Output rise time	+	20% to 80% of output amplitude		0.3	1.0	ns
Output lise time	t _r	Single-ended output signal, measurement circuit 7		0.5	1.0	115
Output fall time	4	80% to 20% of output amplitude		0.2	1.0	na
Output fall time t _f		Single-ended output signal, measurement circuit 7	0.3		1.0	ns
Output enable propagation delay *1	t _{OE}	$T_a=25$ °C, design value, measurement circuit 8			20	μs
Output disable propagation delay	t _{OD}	T _a =25°C, design value, measurement circuit 8			200	ns

$V_{DD} = 2.97$ to 3.63V, $V_C = 0.5V_{DD}$, $V_{SS} = 0V$, $T_a = -40$ to +85°C unless otherwise noted

*1. Rating may vary depending on the power supply used, values of bypass capacitors, and other factors.

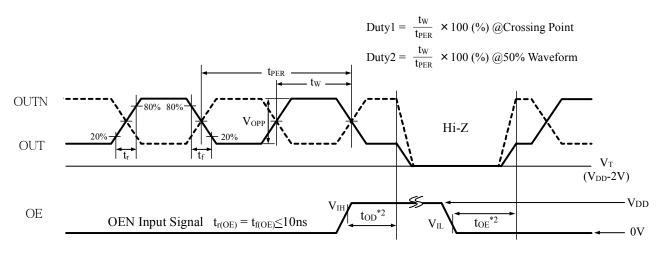
Note. The ratings are measured by using the NPC standard crystal and jig. They may vary due to crystal characteristics, so they must be carefully evaluated. The recommended crystal element characteristics are $R1 < 20\Omega$ and C0 < 1.5pF.

B1, B2 version


Parameter	Symbol	Conditions	Rating			Unit
r ar ameter	Symbol	Conditions	MIN	ТҮР	MAX	Um
	Duty1	Measured at output cross point	45	50	55	%
Duty cycle	Duty1	$T_a=25$ °C, $V_{DD}=3.3$ V, measurement circuit 7	43	50	55	/0
Duty cycle	Duty2	Measured at 50% of output amplitude	45	50	55	%
	Duty2	$T_a=25$ °C, $V_{DD}=3.3$ V, measurement circuit 7	43	50	55	/0
Output amplitude	V	Peak to peak of output waveform	0.4			v
Ouput amplitude	V _{OPP}	Single-ended output signal, measurement circuit 7	0.4			v
Output rise time	4	20% to 80% of output amplitude		0.3	1.0	ns
Output lise une	t _r	Single-ended output signal, measurement circuit 7			1.0	115
Output fall time	4	80% to 20% of output amplitude		0.2	1.0	na
Output fall time t _f		Single-ended output signal, measurement circuit 7	0.3		1.0	ns
Output enable propagation delay ^{*1}	t _{OE}	T _a =25°C, design value, measurement circuit 8			20	μs
Output disable propagation delay	t _{OD}	$T_a=25$ °C, design value, measurement circuit 8			200	ns

$V_{\rm DD} = 2.97$ to $3.63V$ V = $0.5V_{\rm DD}$	$V_{SS}=0V$, $T_a = -40$ to +85°C unless otherwise noted
(0.5)	13 -10 to 100 -100 to 100 -1000

*1. Rating may vary depending on the power supply used, values of bypass capacitors, and other factors.


Note. The ratings are measured by using the NPC standard crystal and jig. They may vary due to crystal characteristics, so they must be carefully evaluated. The recommended crystal element characteristics are $R1 < 20\Omega$ and C0 < 1.5pF.

Timing chart

*1. On an OE falling edge, the outputs go high impedance (Hi-Z) after the output disable propagation delay (t_{OD}) has elapsed. When this occurs, the output signal is pulled down to V_T (termination voltage) by the load resistance. On an OE rising edge, the output starts after the output enable propagation delay (t_{OE}) has elapsed.

[Used OEN pin]

*2. On an OE falling edge, the outputs go high impedance (Hi-Z) after the output disable propagation delay (t_{OD}) has elapsed. When this occurs, the output signal is pulled down to V_T (termination voltage) by the load resistance. On an OE rising edge, the output starts after the output enable propagation delay (t_{OE}) has elapsed.

FUNCTIONAL DESCRIPTION OE Function

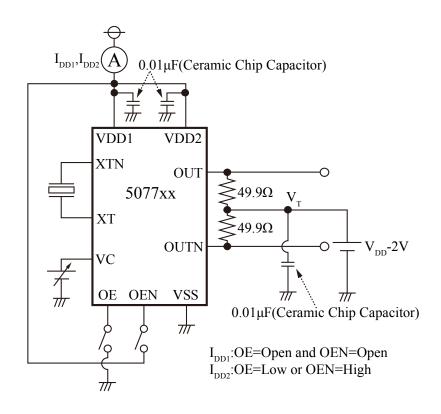
OE pin (built-in pull-up resistor)	OEN pin (built-in pull-down resistor)	Oscillator	Output	
High/Open	Low/Open	Operating	Operating	
Low	Open	Operating	Stopped (Hi-Z)	
Open	High	Operating	Stopped (Hi-Z)	
Low	Llich	Unavailable		
Low	High	TEST mode (V _{OH} , V _{OL})		

Oscillation Start-up Detector Function

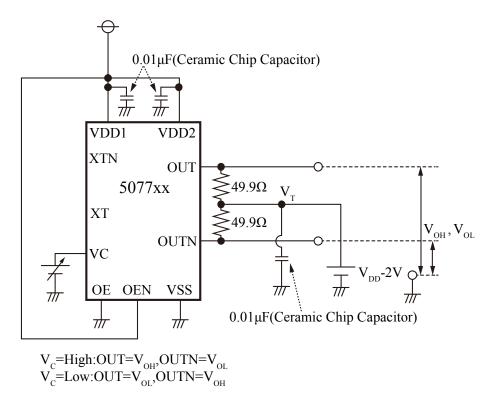
The 5077 series also feature an oscillation start-up detector circuit. This circuit functions to disable the outputs until the oscillation starts. This prevents unstable oscillator output at oscillator start-up when power is applied.

These are measurement circuits for electrical characteristics and switching characteristics.

Note: Bypass capacitors specified in each measurement circuit below should be connected between VDD1, VDD2, V_T and VSS. Load resistance specified in each measurement circuit below should be connected to OUT and OUTN pins (excluding measurement circuit 4, 5, 6).

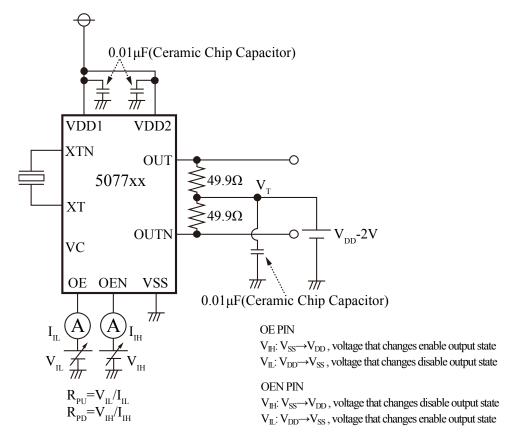

Circuit wiring of bypass capacitors and load resistance should be connected as short as possible (within approximately 3mm). If the circuit wiring is long, the required characteristics may not be realized. Also, if the values of bypass capacitors and load resistance differ from the description in this document or are not connected, the required characteristics may not be realized.

* The capacitor and resistor used in measurement circuits below;

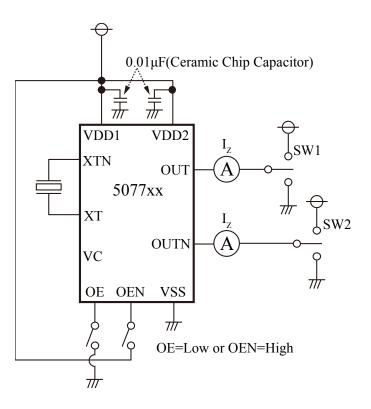

GRM188B11H103K (MURATA)	0.01µF
RN732ATTD49R9B25 (KOA)	49.9Ω

MEASUREMENT CIRCUIT 1

Measurement Parameters: I_{DD1}, I_{DD2}

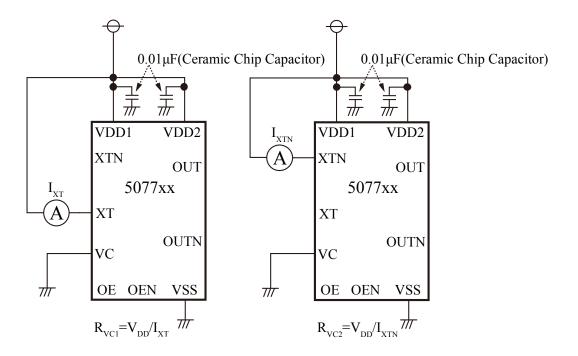


Measurement Parameters: V_{OH} , V_{OL}

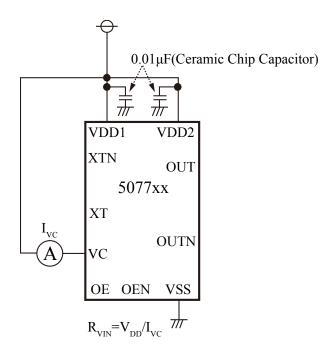


MEASUREMENT CIRCUIT 3

Measurement Parameters: R_{PU} , R_{PD} , V_{IH} , V_{IL}

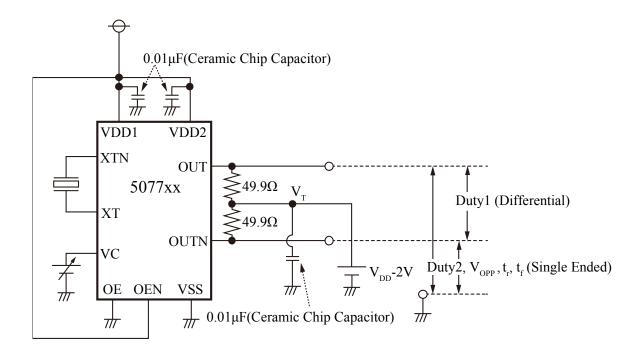


Measurement Parameters: $\ensuremath{I_Z}$

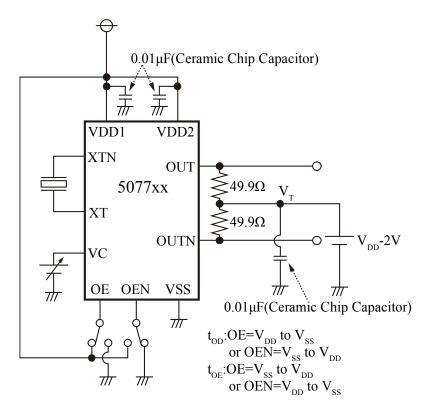


MEASUREMENT CIRCUIT 5

Measurement Parameters: R_{VC1}, R_{VC2}

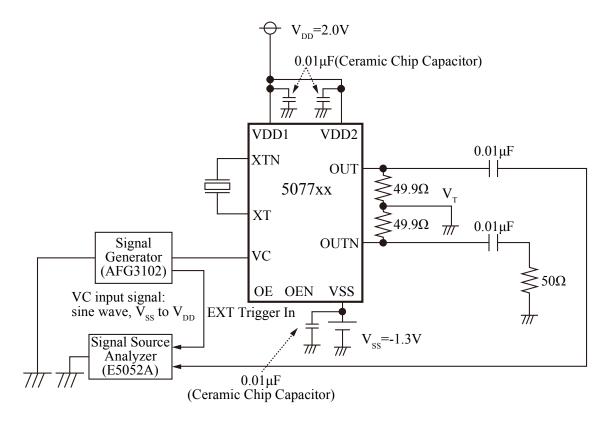


Measurement Parameters: R_{VIN}



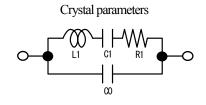
MEASUREMENT CIRCUIT 7

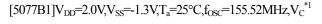
Measurement Parameters: Duty1, Duty2, $V_{\text{OPP}}, t_{r}, t_{f}$



Measurement Parameters: t_{OE}, t_{OD}

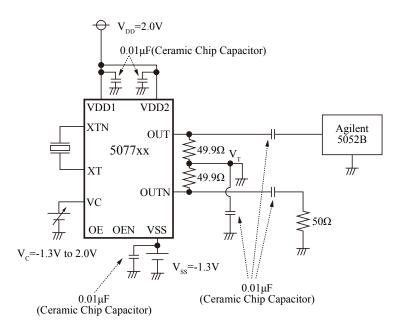
MEASUREMENT CIRCUIT 9


Measurement Parameters: F_M

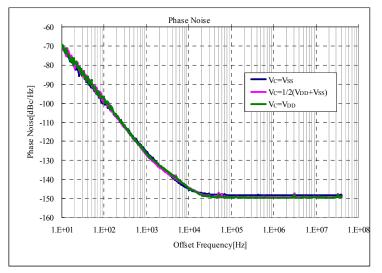

REFERENCE DATA

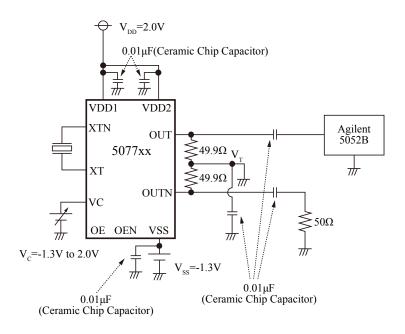
The following characteristics are measured using the crystal below. Note that the characteristics will vary with the crystal used.

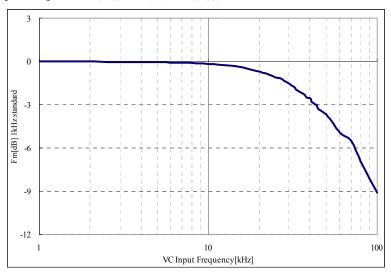
Crystal used for measurement					
Parameter	A1	B1			
f _{OSC} (MHz)	77.76	155.52			
C0(pF)	3.0	1.4			
γ(=C0/C1)	356	327			
R1(Ω)	9.9	11.9			



Pulling Range

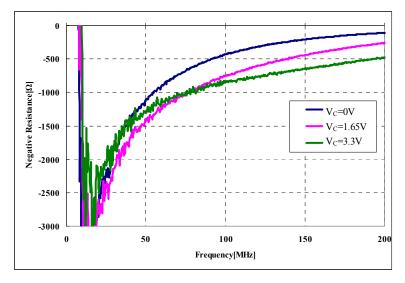



*1: V_C voltage graph adjusted for V_{SS}=0V.

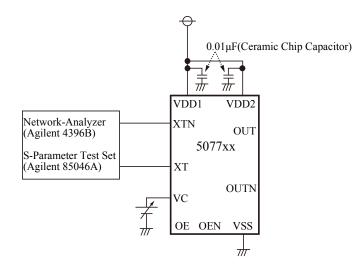

Phase Noise

 $[5077B1]V_{DD}=2.0V,V_{SS}=-1.3V,T_a=25^{\circ}C, f_{OSC}=155.52MHz$

Modulation Bandwidth

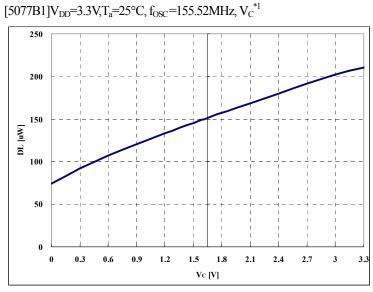


 $[5077B1]V_{DD}=2.0V,V_{SS}=-1.3V,T_a=25^{\circ}C, f_{OSC}=155.52MHz$

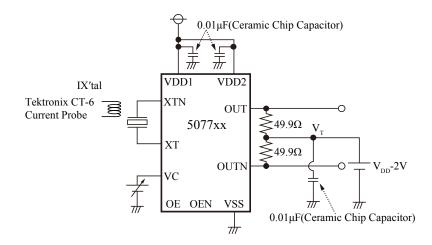

[Measurement circuit diagram] Measurement circuit 9

Negative Resistance

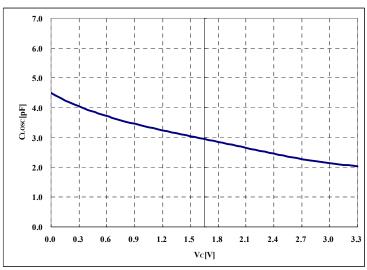
[5077B1]V_{DD}=3.3V,T_a=25°C,C0=0pF



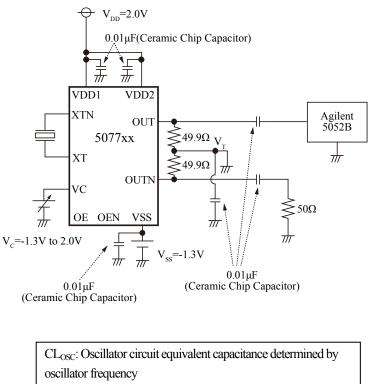
[Measurement circuit diagram]



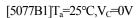
Measurement results using 4396B Agilent analyzer on NPC test jig. Measurements will vary with test jig and measurement environment.

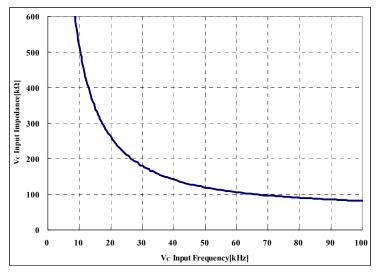

Drive Level

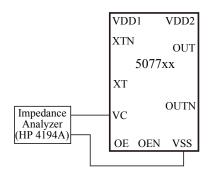
*1: V_C voltage graph adjusted for $V_{SS}=0V$.



Oscillator CL Characteristics


 $[5077B1]V_{DD}=2.0V,V_{SS}=-1.3V,T_a=25^{\circ}C,f_{OSC}=155.52MHz,V_C^{*1}$


*1: V_C voltage graph adjusted for $V_{SS}=0V$.



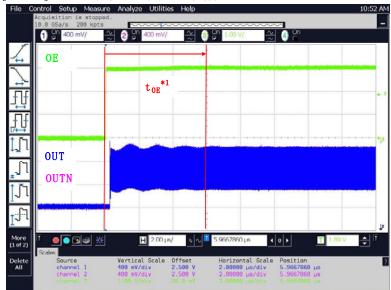
$$CLosc = \frac{C1}{\left(\frac{f_{osc}}{fs}\right)^2 - 1} - C0$$

C1: Crystal element equivalent series capacitance
C0: Crystal element equivalent parallel capacitance
fs: Crystal element series resonance frequency

VC Terminal Input Impedance

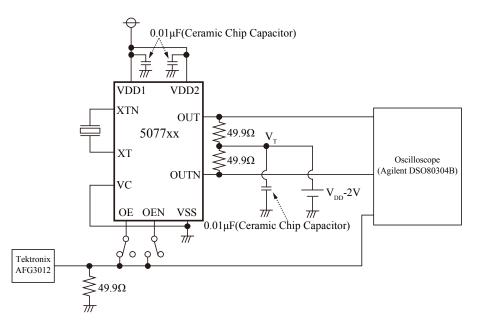
VC input signal: 1kHz to 100kHz, $0.1V_{\mbox{\tiny P-P}}$

Output Waveform


 $[5077B1]V_{DD}=3.3V,V_{C}=1.65V,T_{a}=25^{\circ}C, f_{OSC}=155.52MHz$

[Measurement circuit diagram] Measurement circuit 7

Measurement equipment: Oscilloscope DSO80604B(Agilent), Differential probe 1134A (Probe head E2678A)


Output Enable Propagation Delay

 $[5077B1]V_{DD}=3.3V,V_{C}=1.65V,T_{a}=25^{\circ}C, f_{OSC}=155.52MHz$

*1: t_{OE} is the time required for the output level to stabilize, and which varies depending on the power supply used, bypass capacitor values, and other factors.

Measurement equipment: Power supply voltage PW18-1.8AQYB(KENWOOD)

Please pay your attention to the following points at time of using the products shown in this document.

1. The products shown in this document (hereinafter "Products") are designed and manufactured to the generally accepted standards of reliability as expected for use in general electronic and electrical equipment, such as personal equipment, machine tools and measurement equipment. The Products are not designed and manufactured to be used in any other special equipment requiring extremely high level of reliability and safety, such as aerospace equipment, nuclear power control equipment, medical equipment, transportation equipment, disaster prevention equipment, security equipment. The Products are not designed and manufactured to be used for the apparatus that exerts harmful influence on the human lives due to the defects, failure or malfunction of the Products. If you wish to use the Products in that apparatus, please contact our sales section in advance.

In the event that the Products are used in such apparatus without our prior approval, we assume no responsibility whatsoever for any damages resulting from the use of that apparatus.

- 2. NPC reserves the right to change the specifications of the Products in order to improve the characteristics or reliability thereof.
- 3. The information described in this document is presented only as a guide for using the Products. No responsibility is assumed by us for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of the third parties. Then, we assume no responsibility whatsoever for any damages resulting from that infringements.
- 4. The constant of each circuit shown in this document is described as an example, and it is not guaranteed about its value of the mass production products.
- 5. In the case of that the Products in this document falls under the foreign exchange and foreign trade control law or other applicable laws and regulations, approval of the export to be based on those laws and regulations are necessary. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

1-9-9, Hatchobori, Chuo-ku, Tokyo 104-0032, Japan Telephone: +81-3-5541-6501 Facsimile: +81-3-5541-6510 http://www.npc.co.jp/ Email:sales@npc.co.jp

ND12024-E-00 2012.07