OVERVIEW

The CF5074B is VCXO module IC with built-in varicap diodes. The integrated varicap diode BiCMOS process allows the device to be fabricated on a single chip. A newly developed oscillator circuit features reduced drive level of crystal and wide pullrange. A VCXO module can be constructed with just the connection of a crystal unit, making the devices ideal as surface-mounted, compact VCXO modules.

FEATURES

- 2.25 to 3.6 V operating supply voltage range
- 50 MHz to 80 MHz operating frequency range
- Varicap diode built-in
- Oscillation start-up detector function
- CMOS output duty level
- $4 \mathrm{~mA}(\mathrm{~min})$ output drive capability
- 15 pF output load
- Standby function
- High impedance in standby mode
- BiCMOS process
- Chip form (CF5074B)

APPLICATIONS

- VCXO modules

ORDERING INFORMATION

Device	Package
CF5074B-1	Chip form
CF5074B-3	

PAD LAYOUT

(Unit: $\mu \mathrm{m}$)

PAD DESCRIPTION AND DIMENSIONS

Pad No.	Name	I/O		Pad dimensions $[\mu \mathrm{m}]$	
			\mathbf{X}	Y	
1	VSS	-	(-) supply pin	111	111
2	Q	0	Output pin. High-impedance in standby mode	958	111
3	VDD	-	(+) supply pin	958	567
4	XTN	O	Oscillator output. Crystal connection pin	930	1104
5	XT	I	Oscillator input. Crystal connection pin	140	1104
6	VC	I	Oscillation frequency control voltage input pin. Positive polarity (frequency increases with increasing voltage)	140	932
7	INHN	I	Output state control voltage input pin. Standby mode when LOW. Power-saving pull-up resistor built-in	140	734
8	TESN	I	Test pin (leave open)	140	547

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise noted.

Parameter	Symbol	Rating	Unit
Supply voltage range	V_{DD}	-0.5 to 7.0	V
Input voltage range	V_{IN}	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
Output voltage range	$\mathrm{V}_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
Storage temperature range	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Output current	$\mathrm{I}_{\text {OUT }}$	20	mA

RECOMMENDED OPERATING CONDITIONS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise noted.

Parameter	Symbol	Rating			Unit
		Min	Typ	Max	
Operating supply voltage	V_{DD}	2.25	-		V
Output frequency	$\mathrm{f}_{\mathrm{OUT}}$	50	-	80	MHz
Output load capacitance	C_{L}	-	-	15	pF
Input voltage	V_{IN}	V_{SS}	-	V_{DD}	V
Operating temperature	$\mathrm{T}_{\mathrm{OPR}}$	-40	+25	+85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.25$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0.5 \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted.

Parameter	Symbol	Conditions		Rating			Unit
				Min	Typ	Max	
Current consumption	$I_{D D}$	Measurement circuit 2, load circuit 1, INHN = open, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=80 \mathrm{MHz}$	$V_{D D}=2.25$ to 2.75 V	-	20	30	mA
			$\mathrm{V}_{\mathrm{DD}}=3.0$ to 3.6 V	-	26	36	mA
HIGH-level output voltage	V_{OH}	Q: Measurement circuit $1, \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$		$V_{D D}-0.4$	$V_{D D}-0.2$	-	V
LOW-level output voltage	V_{OL}	Q: Measurement circuit $1, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		-	0.2	0.4	V
Output leakage current	I_{Z}	Q: Measurement circuit 6,INHN = LOW	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}$	-	-	10	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {OL }}=\mathrm{V}_{\text {SS }}$	-	-	10	$\mu \mathrm{A}$
HIGH-level input voltage	V_{IH}	INHN		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	-	V
LOW-level input voltage	$\mathrm{V}_{\text {IL }}$	INHN		-	-	$0.3 \mathrm{~V}_{\text {DD }}$	V
INHN pull-up resistance	$\mathrm{R}_{\text {UP1 }}$	Measurement circuit 3	INHN = $\mathrm{V}_{\text {SS }}$	0.4	0.8	1.2	$\mathrm{M} \Omega$
	$\mathrm{R}_{\text {UP2 }}$		$\mathrm{INHN}=0.7 \mathrm{~V}_{\mathrm{DD}}$	15	-	150	k Ω
Oscillator block built-in resistance	$\mathrm{R}_{\mathrm{VC} 1}$	Measurement circuit 4		75	150	225	$\mathrm{k} \Omega$
	$\mathrm{R}_{\mathrm{VC} 2}$			75	150	225	$\mathrm{k} \Omega$
	$\mathrm{R}_{\mathrm{VC} 3}$			10	30	90	$\mathrm{k} \Omega$
Oscillator block built-in capacitance	C_{Vc}	Capacitance of $\mathrm{C}_{\mathrm{VC} 1}$ and $\mathrm{C}_{\mathrm{VC} 2}$	$\mathrm{V}_{\mathrm{C}}=0.3 \mathrm{~V}$	13	16.3	19.6	pF
			$\mathrm{V}_{\mathrm{C}}=1.65 \mathrm{~V}$	6.7	8.9	10.9	pF
			$\mathrm{V}_{\mathrm{C}}=3.0 \mathrm{~V}$	3.3	4.7	6.1	pF
VC input resistance	$\mathrm{R}_{\mathrm{VIN}}$	Measurement circuit 7, $\mathrm{Ta}=25^{\circ} \mathrm{C}$		10	-	-	$\mathrm{M} \Omega$
VC input impedance	$\mathrm{Z}_{\mathrm{VIN}}$	Measurement circuit $8, \mathrm{~V}_{\mathrm{C}}=0 \mathrm{~V}, \mathrm{f}=10 \mathrm{kHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$		-	250	-	$\mathrm{k} \Omega$
VC input capacitance	$\mathrm{C}_{\mathrm{VIN}}$	Measurement circuit $8, \mathrm{~V}_{\mathrm{C}}=0 \mathrm{~V}, \mathrm{f}=10 \mathrm{kHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$		-	60	-	pF
Modulation bandwidth	fm	Measurement circuit $9,-3 \mathrm{~dB}$ frequency, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, $\mathrm{V}_{\mathrm{C}}=3.3 \mathrm{Vp}-\mathrm{p}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, crystal: $\mathrm{f}=80 \mathrm{MHz}$, $C 0=4.8 \mathrm{pF}, \gamma \leq 440$		-	30	-	kHz

SWITCHING CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.25$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0.5 \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted.

Parameter	Symbol	Conditions		Rating			Unit
				Min	Typ	Max	
Output rise time	$\mathrm{t}_{\mathrm{r} 1}$	Measurement circuit 2, load circuit 1, $0.2 \mathrm{~V}_{\mathrm{DD}} \rightarrow 0.8 \mathrm{~V}_{\mathrm{DD}}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		-	2.5	4	ns
Output fall time	t_{41}	Measurement circuit 2, load circuit 1,$0.8 \mathrm{~V}_{\mathrm{DD}} \rightarrow 0.2 \mathrm{~V}_{\mathrm{DD}}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		-	2.5	4	ns
Output duty cycle	Duty	Measurement circuit 2, load circuit $1, \mathrm{Ta}=25^{\circ} \mathrm{C}$, $C_{L}=15 \mathrm{pF}$	$V_{D D}=2.5 \mathrm{~V}$	40	50	60	\%
			$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	45	50	55	\%
Output disable delay time	$t_{\text {PLZ }}$	Measurement circuit 5 , load circuit $1, \mathrm{Ta}=25^{\circ} \mathrm{C}$, $C_{L} \leq 15 p F$		-	-	100	ns
Output enable delay time	$t_{\text {PZL }}$			-	-	100	ns

MEASUREMENT CIRCUITS

Measurement Circuit 1

Measurement Circuit 2

$\mathrm{V}_{\mathrm{C}}=0.5 \mathrm{~V}_{\mathrm{DD}}, I \mathrm{INHN}=$ open, crystal oscillation

Measurement Circuit 3

$V_{C}=0.5 V_{D D}$

Measurement Circuit 4

Measurement Circuit 5

XT input signal: $10 \mathrm{MHz}, 1.0 \mathrm{Vp}-\mathrm{p}$
$\mathrm{C} 1=0.001 \mu \mathrm{~F}, \mathrm{R} 1=50 \Omega, \mathrm{~V}_{\mathrm{C}}=0.5 \mathrm{~V}_{\mathrm{DD}}$
Measurement Circuit 6

$V_{C}=1 / 2 V_{D D}$

Measurement Circuit 7

Measurement Circuit 8

Measurement Circuit 9

$\mathrm{C} 1=20 \mu \mathrm{~F}, \mathrm{R} 1=\mathrm{R} 2=100 \mathrm{M} \Omega, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$
VC modulation signal: 100 Hz to $100 \mathrm{kHz}, 3.3 \mathrm{Vp}-\mathrm{p}$

Load Circuit 1

Q output

Switching Time Measurement Waveform

Output duty level, $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$

Output duty cycle

Output Enable/Disable Delay Times

FUNCTIONAL DESCRIPTION

Standby Function

When INHN goes LOW, the device is in standby mode. The Q output becomes high impedance and the oscillator circuit continues running.

INHN	\mathbf{Q}	Oscillator
HIGH (or open)	f_{0}	Operating
LOW	High impedance	Operating

Power-saving Pull-up Resistor

The INHN pin pull-up resistance changes in response to the input level (HIGH or LOW). When INHN is tied LOW, the pull-up resistance becomes large, reducing the current consumed by the resistance. When INHN is left open, the pull-up resistance becomes small, such that even if the input is affected by external noise the outputs are stable due to INHN being tied HIGH by the pull-up resistor.

Oscillation Start-up Detector Function

The devices also feature an oscillation start-up detector circuit. This circuit functions to disable the outputs until the oscillation starts. This prevents unstable oscillator output at oscillator start-up when power is applied.

TYPICAL CHARACTERISTICS

The following characteristics measured using the crystal for NPC characteristics authentication. Note that the characteristics will vary with the crystal used.

Frequency Pullrange, Oscillator Equivalent Capacitance (C_{L}) Characteristics

$$
V_{D D}=2.5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{C}}=1.25 \mathrm{~V} \text { reference }\right)
$$

$V_{D D}=2.5 \mathrm{~V}$

$V_{D D}=3.3 \mathrm{~V}\left(V_{C}=1.65 \mathrm{~V}\right.$ reference $)$

$V_{D D}=3.3 V$

Measurement circuit

Crystal: $f=80 \mathrm{MHz}, \mathrm{CO}=4.8 \mathrm{pF}, \gamma=440$
C_{L} : Oscillator equivalent capacitance is determined by the oscillator frequency.

Negative Resistance Characteristics

Measurement circuit

Modulation Characteristics

Measurement circuit

$\mathrm{C} 1=20 \mu \mathrm{~F}, \mathrm{R} 1=\mathrm{R} 2=100 \mathrm{M} \Omega, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$
VC modulation signal: 100 Hz to $100 \mathrm{kHz}, 3.3 \mathrm{Vp}-\mathrm{p}$

Output Waveform

Measurement equipment

■ Oscilloscope: 54855A (Agilent)

$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, 15 \mathrm{pF}$ load, $\mathrm{V}_{\mathrm{C}}=1.25 \mathrm{~V}$

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, 15 \mathrm{pF}$ load, $\mathrm{V}_{\mathrm{C}}=1.65 \mathrm{~V}$

Relation Between Pulling Range and Constants for Crystal Units

Measurement data when crystal is changed.

	A	B	C	D	E	F	G	H	I	J	L
$\mathrm{C} 0[\mathrm{pF}]$	4.8	3.6	1.8	1.9	2.2	1.9	2.3	3.9	2.9	2.8	2.3
γ	440	337	518	411	498	516	402	368	315	324	390
Pulling range $^{1}[\mathrm{ppm}]$	295	381	179	235	177	184	220	346	354	349	227

1. Pulling range: Value of changes in VC voltage from OV to 3.3 V .

Measurement circuit

Please pay your attention to the following points at time of using the products shown in this document.
The products shown in this document (hereinatter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from SEIKO NPC CORPORATION (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

1-9-9, Hatchobori, Chuo-ku,
Tokyo 104-0032, Japan
Telephone: +81-3-5541-6501
Facsimile: +81-3-5541-6510
http://www.npc.co.jp/
Email: sales@npc.co.jp

