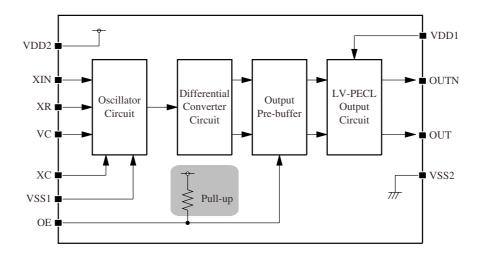
# NPC

## **OVERVIEW**

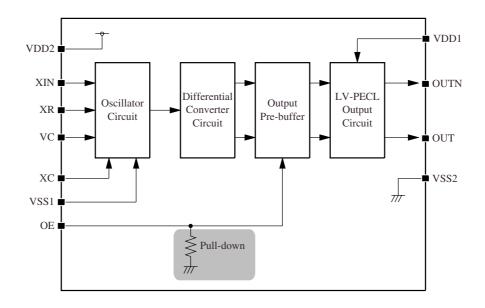
The 5072 series is 155MHz VCXO IC. It incorporates a 155.52MHz fundamental frequency oscillator circuit and a differential LV-PECL output circuit on a single chip. The oscillator circuit features characteristics optimized for VCXO operation, and includes a varicap connection pin. The 5072 series can be configured with few external components, making them ideal as miniature VCXO modules.

#### **FEATURES**

- 3.0 to 3.6V operating supply voltage range
- 70MHz to 200MHz oscillator frequency range
- Differential LV-PECL output
- 50 ± 5% output duty (measured at the output crossing point)


## **ORDERING INFORMATION**

| Device     | Package   |
|------------|-----------|
| CF5072×A-1 | Chip form |

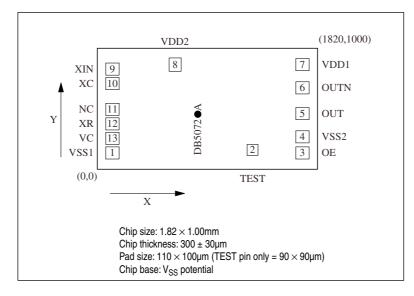

- Output enable function
- -40 to  $+85^{\circ}$ C operating temperature range
- Chip form (CF5072×A)

## **BLOCK DIAGRAM**

#### 5072BA



5072CA




#### ESD sensitive device:

The XR pin is not equipped with a protection circuit. Accordingly, its electrostatic withstand voltage is significantly lower than that of the other pins. ESD breakdown prevention handling precautions are strongly recommended.

#### PAD LAYOUT

(Unit: µm)



## PAD DESCRIPTION AND DIMENSIONS

| Pad No. Name I/O <sup>*</sup> |                  | I/O <sup>*1</sup> | Function                                                                                  | Pad dimen | sions [µm] | Pad size [µm] |     |  |
|-------------------------------|------------------|-------------------|-------------------------------------------------------------------------------------------|-----------|------------|---------------|-----|--|
| Pad No.                       | Name             | 1/O ·             | Function                                                                                  | x         | Y          | х             | Y   |  |
| 1                             | VSS1             | -                 | Oscillator ground                                                                         | 125       | 135        | 110           | 100 |  |
| 2                             | TEST             | I                 | IC test pin (leave open circuit for normal operation)                                     | 1283      | 160        | 90            | 90  |  |
| 3                             | OE               | I                 | Output enable<br>5072BA: pull-up resistor built-in<br>5072CA: pull-down resistor built-in | 1695      | 135        | 110           | 100 |  |
| 4                             | VSS2             | -                 | Ground                                                                                    | 1695      | 268        | 110           | 100 |  |
| 5                             | OUT              | 0                 | Differential LV-PECL non-inverting output (true)                                          | 1695      | 460        | 110           | 100 |  |
| 6                             | OUTN             | 0                 | Differential LV-PECL inverting output (complementary)                                     | 1695      | 673        | 110           | 100 |  |
| 7                             | VDD1             | -                 | ECL buffer supply                                                                         | 1695      | 865        | 110           | 100 |  |
| 8                             | VDD2             | -                 | Supply                                                                                    | 643       | 865        | 100           | 110 |  |
| 9                             | XIN              | I                 | Crystal unit connection                                                                   | 125       | 828        | 110           | 100 |  |
| 10                            | ХС               | 0                 | Varicap anode connection                                                                  | 125       | 708        | 110           | 100 |  |
| 11                            | NC               | -                 | No connection (leave open circuit for normal operation)                                   | 125       | 495        | 110           | 100 |  |
| 12                            | XR <sup>*2</sup> | I                 | Varicap cathode connection and inductor connection                                        | 125       | 375        | 110           | 100 |  |
| 13                            | VC               | I                 | Control voltage pin                                                                       | 125       | 255        | 110           | 100 |  |

\*1. I: Input, O: Output

\*2. The XR pin electrostatic withstand voltage is weaker than the other pins. The electrostatic withstand voltage of pins, excluding XR, is the same as that for existing NPC devices.

### **ABSOLUTE MAXIMUM RATINGS**

| Parameter                               | Symbol           | Conditions      | Rating                                   | Unit |
|-----------------------------------------|------------------|-----------------|------------------------------------------|------|
| Supply voltage range <sup>*1</sup>      | V <sub>DD</sub>  | VDD1, VDD2 pins | $V_{\rm SS}$ – 0.5 to $V_{\rm SS}$ + 7.0 | V    |
| Input voltage range <sup>*1 *2</sup>    | V <sub>IN</sub>  | Input pins      | $V_{SS}$ – 0.5 to $V_{DD}$ + 0.5         | V    |
| Output voltage range*1 *2               | V <sub>OUT</sub> | Output pins     | $V_{SS}$ – 0.5 to $V_{DD}$ + 0.5         | V    |
| Storage temperature range <sup>*3</sup> | T <sub>STG</sub> |                 | -65 to +150                              | °C   |

\*1. This parameter rating is the values that must never exceed even for a moment. This product may suffer breakdown if this parameter rating is exceeded. Operation and characteristics are guaranteed only when the product is operated at recommended operating conditions. \*2. V<sub>DD</sub> is a V<sub>DD</sub> value of recommended operating conditions.

\*3. When stored in nitrogen or vacuum atmosphere applied to IC itself only (excluding packaging materials).

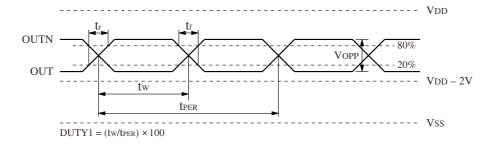
## **RECOMMENDED OPERATING CONDITIONS**

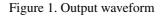
| Parameter             | Symbol           | Conditions                         | Rating |     |     | Unit |
|-----------------------|------------------|------------------------------------|--------|-----|-----|------|
| Faranieler            | Symbol           | Conditions                         | Min    | Тур | Max | Unit |
| Supply voltage        | V <sub>DD</sub>  |                                    | 3.0    | -   | 3.6 | V    |
| Operating temperature | T <sub>OPR</sub> |                                    | -40    | -   | +85 | °C   |
| Output load           | RL               | Terminated to V <sub>DD</sub> – 2V | -      | 50  | -   | Ω    |
| Output frequency      | f <sub>OUT</sub> |                                    | 70     | -   | 200 | MHz  |

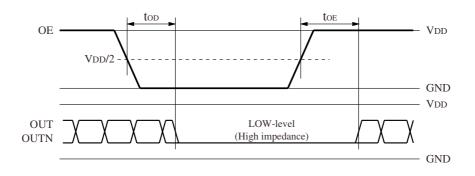
Note. Since it may influence the reliability if it is used out of range of recommended operating conditions, this product should be used within this range.

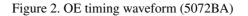
## **ELECTRICAL CHARACTERISTICS**

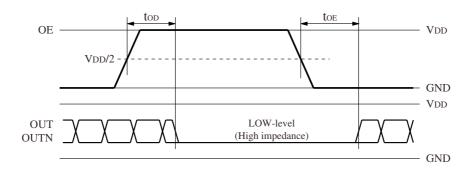
#### **DC Characteristics**

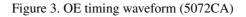

Recommended operating conditions apply unless otherwise noted.


| Parameter                 | Symbol           | Conditions                                                                                                 |                                                    |                                   | Rating             |       |                    | Unit |
|---------------------------|------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------|--------------------|-------|--------------------|------|
| Parameter                 | Symbol           |                                                                                                            |                                                    |                                   | Min                | Тур   | Max                | Unit |
| Current consumption 1     | I <sub>DD1</sub> | Measurement circuit 1, output terminated to V <sub>DE</sub>                                                | <sub>0</sub> – 2V, OE = 0                          | OPEN                              | -                  | 50    | 88                 | mA   |
| Current consumption 2     | I <sub>DD2</sub> | Measurement circuit 1,<br>output terminated to V <sub>DD</sub> – 2V<br>5072BA: OE = LOW, 5072CA: OE = HIGH |                                                    |                                   | -                  | 10    | 20                 | mA   |
|                           | N                |                                                                                                            | Ta = 0 to +8                                       | 35°C                              | 2.275              | 2.350 | 2.420              | V    |
| HIGH-level output voltage | V <sub>OH</sub>  | Measurement circuit 2,<br>$V_{DD} = 3.3V$ ,                                                                | Ta = -40 to                                        | 0°C                               | 2.215              | 2.295 | 2.420              | V    |
|                           | V <sub>OL</sub>  | OUT/OUTN pins,<br>OE = OPEN                                                                                | Ta = 0 to +8                                       | 35°C                              | 1.490              | 1.600 | 1.680              | V    |
| LOW-level output voltage  |                  | OE = OPEN                                                                                                  | Ta = -40 to                                        | 0°C                               | 1.470              | 1.605 | 1.745              | V    |
| HIGH-level input voltage  | V <sub>IH</sub>  | Measurement circuit 3, 0                                                                                   | DE pin                                             |                                   | 0.7V <sub>DD</sub> | -     | -                  | V    |
| LOW-level input voltage   | V <sub>IL</sub>  | Measurement circuit 3, 0                                                                                   | DE pin                                             |                                   | _                  | -     | 0.3V <sub>DD</sub> | V    |
|                           |                  | Measurement circuit 4,                                                                                     | 5072BA                                             | $V_{IH} = 0.7 V_{DD}$             | 20                 | -     | 200                | μA   |
| HIGH-level input current  | I <sub>IH</sub>  | OE pin                                                                                                     | 5072CA                                             | V <sub>IH</sub> = V <sub>DD</sub> | _                  | _     | 20                 | μA   |
|                           |                  | Measurement circuit 4,                                                                                     | 5072BA                                             | $V_{IL} = 0V$                     | _                  | _     | 20                 | μA   |
| LOW-level input current   | I IL             | OE pin                                                                                                     | 5072CA                                             | $V_{IL} = 0.3 V_{DD}$             | 20                 | -     | 200                | μA   |
| Input impedance           | Z <sub>IN</sub>  | Measurement circuit 5, measured between supply and VC                                                      |                                                    |                                   | 10                 | _     | -                  | MΩ   |
| VC resistance             | R <sub>VC</sub>  | Measurement circuit 6, measured between VC and XR                                                          |                                                    |                                   | 100                | 150   | 200                | kΩ   |
| Pull-down resistance      | R <sub>S</sub>   | Measurement circuit 7, n                                                                                   | Measurement circuit 7, measured between VSS and XC |                                   |                    | 20    | 40                 | kΩ   |


#### **AC Characteristics**


Recommended operating conditions apply unless otherwise noted.

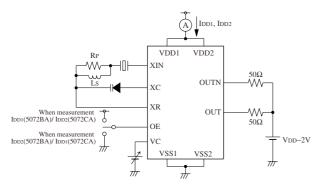

| Devemeter                 | Symbol           | Conditions                                                                                               |     | Unit |     |      |
|---------------------------|------------------|----------------------------------------------------------------------------------------------------------|-----|------|-----|------|
| Parameter Sym             |                  | Conditions                                                                                               | Min | Тур  | Max | Unit |
| Output duty cycle 1       | Duty1            | Measurement circuit 1, measured at output crossing point, Ta = $25^{\circ}$ C, V <sub>DD</sub> = $3.3$ V | 45  | 50   | 55  | %    |
| Output duty cycle 2       | Duty2            | Measurement circuit 1, measured at 50% output swing, Ta = 25°C, $V_{DD}$ = 3.3V                          | 45  | 50   | 55  | %    |
| Output swing              | V <sub>OPP</sub> | Measurement circuit 1, peak-to-peak of output<br>waveform                                                | 0.4 | -    | -   | V    |
| Output rise time          | t <sub>r</sub>   | Measurement circuit 1, output swing 20% to 80%                                                           | -   | 0.5  | 1   | ns   |
| Output fall time          | t <sub>f</sub>   | Measurement circuit 1, output swing 80% to 20%                                                           | -   | 0.5  | 1   | ns   |
| Output enable delay time  | t <sub>OE</sub>  | Measurement circuit 3, Ta = 25°C                                                                         | -   | -    | 200 | ns   |
| Output disable delay time | t <sub>OD</sub>  | Measurement circuit 3, Ta = 25°C                                                                         | -   | -    | 200 | ns   |





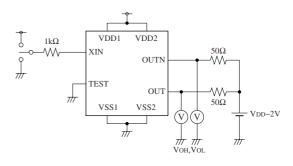






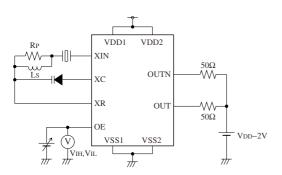

## **MEASUREMENT CIRCUITS**

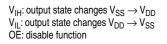

#### **Measurement Circuit 1**

Parameters:  $I_{DD1}$ ,  $I_{DD2}$ , Duty1, Duty2,  $V_{OPP}$ ,  $t_r$ ,  $t_f$ 



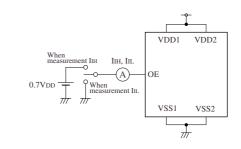
## **Measurement Circuit 2**


Parameters: V<sub>OH</sub>, V<sub>OL</sub>

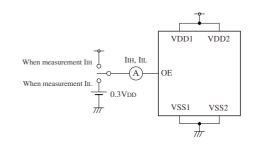



| When XIN = HIGH: | OUT is tied LOW (V <sub>OL</sub> )   |
|------------------|--------------------------------------|
|                  | OUTN is tied HIGH (V <sub>OH</sub> ) |
| When XOUT = LOW: | OUT is tied HIGH (V <sub>OH</sub> )  |
|                  | OUTN is tied LOW (V <sub>OL</sub> )  |

#### **Measurement Circuit 3**

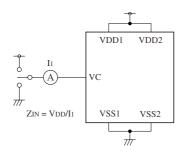

Parameters:  $V_{IH}$ ,  $V_{IL}$ ,  $t_{OE}$ ,  $t_{OD}$ 





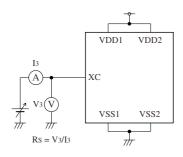

#### **Measurement Circuit 4**

Parameter:  $I_{IH}$ ,  $I_{IL}$ 5072BA



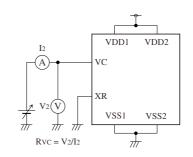

5072CA




## **Measurement Circuit 5**

Parameter: Z<sub>IN</sub>



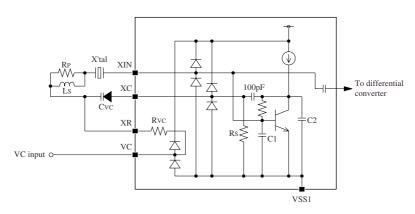

#### **Measurement Circuit 7**

Parameter: R<sub>S</sub>



### **Measurement Circuit 6**

Parameter: R<sub>VC</sub>




#### FUNCTIONAL DESCRIPTION

#### **Oscillator Equivalent Circuit**

The oscillator can be represented by the equivalent circuit shown below. The crystal unit is connected to XIN, and the other terminal is connected to the  $L_S$  and  $R_P$  network. A varicap is added with cathode connected to XR, and anode connected to XC.

The control voltage is applied to the VC pin, with high-resistance element connected between VC and XR built-in.



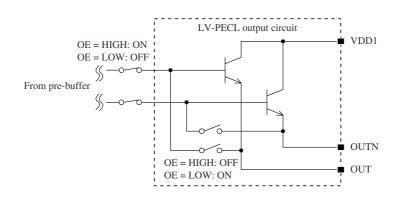
Note. R<sub>P</sub> is a damping resistor to prevent parasitic oscillation due the combined effects of the external inductor (expander coil) and varicap capacitance/internal capacitance. It is recommended that R<sub>P</sub> be connected in parallel with L<sub>S</sub>.

#### Oscillator internal capacitors (design value)

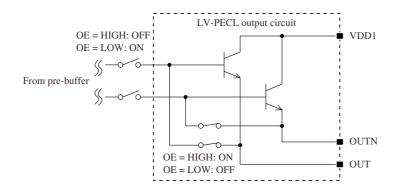
| Version | Internal capacitance [pF] (design value) |      |  |  |
|---------|------------------------------------------|------|--|--|
| version | C1                                       | C2   |  |  |
| 5072BA  | 11.2                                     | 14.4 |  |  |
| 5072CA  | 11.2                                     | 14.4 |  |  |

#### Selecting external constants

The L<sub>S</sub> and R<sub>P</sub> values should be selected such that both (a) the resonance point in the loop formed by L<sub>S</sub> and C0, C<sub>L</sub>, C<sub>VC</sub> is higher than the crystal oscillator frequency, and (b) the resonance point does not satisfy the oscillation condition. (C0 is the crystal shunt capacitance, C<sub>L</sub> is the oscillator equivalent circuit capacitance, and C<sub>VC</sub> is the varicap capacitance.)


In the oscillator circuit, if the crystal capacitance C0 is 2.85pF, the varicap ( $C_{VC}$ ) is a HVC350B (Renesas), and the oscillator frequency is 155.52MHz, then values in the order  $L_S = 220$ nH,  $R_P = 2.2$ k $\Omega$  or  $L_S = 180$ nH,  $R_P = 1.8$ k $\Omega$  will satisfy the conditions above. The optimal values for  $L_S$  and  $R_P$  will vary with crystal characteristics, oscillator frequency, and varicap diode, thus the values selected should be thoroughly evaluated.

## **Output Circuit**


The output is enabled/disabled using the OE pin. Outputs are high impedance when disabled. The OE pin logic is shown in the following table.

| Version | OE           | OUT            | OUTN           |
|---------|--------------|----------------|----------------|
| 5072BA  | HIGH or open |                | CLK output     |
| 5072BA  | LOW          | High impedance | High impedance |
| 5072CA  | HIGH         | High impedance | High impedance |
| 5072CA  | LOW or open  | CLK output     | CLK output     |

5072BA



5072CA



Please pay your attention to the following points at time of using the products shown in this document.

1. The products shown in this document (hereinafter "Products") are designed and manufactured to the generally accepted standards of reliability as expected for use in general electronic and electrical equipment, such as personal equipment, machine tools and measurement equipment. The Products are not designed and manufactured to be used in any other special equipment requiring extremely high level of reliability and safety, such as aerospace equipment, nuclear power control equipment, medical equipment, transportation equipment, disaster prevention equipment, security equipment. The Products are not designed and manufactured to be used for the apparatus that exerts harmful influence on the human lives due to the defects, failure or malfunction of the Products. If you wish to use the Products in that apparatus, please contact our sales section in advance.

In the event that the Products are used in such apparatus without our prior approval, we assume no responsibility whatsoever for any damages resulting from the use of that apparatus.

- 2. NPC reserves the right to change the specifications of the Products in order to improve the characteristics or reliability thereof.
- 3. The information described in this document is presented only as a guide for using the Products. No responsibility is assumed by us for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of the third parties. Then, we assume no responsibility whatsoever for any damages resulting from that infringements.
- 4. The constant of each circuit shown in this document is described as an example, and it is not guaranteed about its value of the massproduction products.
- 5. In the case of that the Products in this document falls under the foreign exchange and foreign trade control law or other applicable laws and regulations, approval of the export to be based on those laws and regulations are necessary. Customers are requested appropriately take steps to obtain required permissions or approvals form appropriate government agencies.



NC0212DE 2011.01