1. OVERVIEW

The CF5062Hxx(B)/WF5062Hxx(B) series are HCSL output oscillator ICs that support a wide output frequency range for High-frequency applications typified by PCI-Express.

The characteristics of oscillation circuit are suitable for small crystal elements.

Therefore, CF5062Hxx(B)/WF5062Hxx(B) series are suitable in the crystal oscillator module of small package The oscillator circuit uses voltage regulator drive to achieve a low drive level.

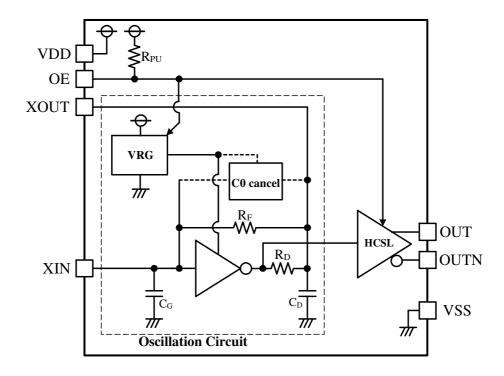
2. FEATURES

2.25V to 3.63V ■ Operating supply voltage: -40°C to +125°C ■ Operating temperature:

 \blacksquare Recommended oscillation frequency (f_0): 3rd overtone frequency 100MHz to 175MHz Fundamental frequency 25MHz to 175MHz

 \blacksquare Output frequency (f_{OUT}): ■ Oscillator capacitances: C_G, C_D built-in

HCSL ■Output level:


■ Standby function: Oscillator stops, Hi-Z outputs,

power saving pull-up resistor built-in (OE output)

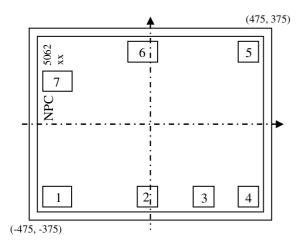
■ Oscillation detection circuit built-in

■ damping resistance 33ohm(HxxB ver)

3. BLOCK DIAGRAM

4. PAD LAYOUT

(1) Chip size*1: X=0.95mm, Y=0.75mm


(2) Rear surface potential: Vss level

(3) Pad size: No. 1, 6, 7: $110\mu m \times 80\mu m$

No. 2, 3, 4, 5: $80\mu m \times 80\mu m$

(4) Chip dimensions

*1. Chip size is measured between scribe line centers.

Pad Coordinates (Origin in chip center), Unit: [µm]

No.	X	Y	Name
1	-363.7	-283.5	VDD
2	-11.7	-283.5	XIN
3	208.2	-283.5	XOUT
4	383.5	-283.5	VSS
5	383.5	283.5	OE
6	-29.1	283.5	OUTN
7	-368.5	168.2	OUT

5. PAD DESCRIPTION

Number	Name	I/O*1	Function
1	VDD	-	(+) Supply voltage
2	XIN	I	Oscillator connections
3	XOUT	О	Oscillator connections
4	VSS	-	(-) Supply voltage
5	OE	I	Output enable. Outputs are disabled when OE is V _{SS} . Disabled state: Oscillator stopped, Hi-Z outputs
6	OUTN	О	HCSL output (inverting output) Disabled state: Hi-Z
7	OUT	О	HCSL output Disabled state: Hi-Z

*1. I: Input, O: Output

6. VERSION LINEUP

5062Hxyz

(1) Version name "x" character (oscillation frequency range)

Version	Oscillation mode	C0 cancel circuit	Recommended C0 value (pF)*1	capac	llator itance E)* ²	Oscillation frequency (reference values) f ₀ (MHz)	
			(pr)		$C_{\mathbf{D}}$	I ₀ (WITIZ)	
D	3rd overtone	Yes	1.0 to 2.0*3	2	2	100 to 140	
Е	Fundamental	168	168	$(0.8 \text{ to } 2.5)^{*4}$	1	1	140 to 175
L^{*5}	Fundamental	No	$\leq 1.5^{*3}$ $(\leq 2.0)^{*4}$	8	14	25 to 100	

- *1. The oscillator circuit is optimized for 5032 to 3225 sized crystal oscillators.
 - When using 7050 sized crystal elements that have large C0, additional evaluation is recommended before implementation due to the increased risk of insufficient oscillation margin.
- *2. Values do not include parasitic capacitance.
- *3. Normal recommended range based on the oscillator circuit design.
- *4. Values in () are full range values. If using these ranges, additional evaluation is recommended before implementation.
- *5. L versions are recommended for use with crystals such as compact AT cut crystals with extremely low C0 and R1, and inverted mesa crystals.
 - (2) Version name "y" character (output frequency)

Version	Output frequency (f _{OUT})
6	f_0

(3) Version name "z" character (option)

Version	Dumping resistance (R_S)
none	none
В	33 ohm

7. ABSOLUTE MAXIMUM RATINGS

 $V_{SS}=0V$

Parameter	Symbol	Conditions	Rating	Unit	Notes
Supply voltage range	V_{DD}	Between VDD and VSS	-0.3 to +4.0	V	*1
Input voltage range	V_{IN}	Inputs	-0.3 to V _{DD} +0.3	V	*1、*2
Output voltage range	V _{OUT}	Outputs	-0.3 to V _{DD} +0.3	V	*1、*2
Junction temperature	T_{j}		+150	°C	*3
Storage temperature	T_{STG}	Chip, wafer form	-55 to +150	°C	*4

- *1. Parameters must not exceed ratings, not even momentarily. If the rating is exceeded, it may affect the electrical characteristics and reliability.
- *2. V_{DD} indicates the operating supply voltage in "8. RECOMMENDED OPERATING CONDITIONS."
- *3. Do not exceed ratings. If a rating is exceeded, there is a risk of deterioration in characteristics and decrease in reliability.
- *4. When stored separately in Nitrogen or vacuum atmosphere.

8. RECOMMENDED OPERATING CONDITIONS

 $V_{SS}=0V$

Parameter	Symbol	Conditions		MIN	ТҮР	MAX	Unit	
		HD6		100		140		
Oscillation frequency*1	\mathbf{f}_0	HE6		140		175	MHz	
		HL6B		25		100		
		HD6		100		140		
Output frequency	$f_{ m OUT}$	HE6		140		175	MHz	
		HL6B		25		100		
Operating supply voltage	$V_{ m DD}$	Between VDD and VSS*2		2.25		3.63	V	
Input voltage	V_{IN}	Inputs		0		V_{DD}	V	
Operating temperature	T_a			-40		+125	°C	
Output load resistance	R_{L}	Between OUT/OUTN and VSS		49.5		50.5	Ω	
Damping resistance	R _S	Between OUT/OUTN and R _L	Hxx		none		Ω	
			HxxB		33		Ω	

- *1. The oscillation frequency range is a target based on evaluation results for the crystal element used for NPC characteristics verification, and does not represent a guarantee of the oscillation frequency band. The oscillation characteristics can vary significantly depending on the characteristics and mounting conditions of the crystal. Accordingly, oscillation characteristics should be thoroughly evaluated for each crystal.
- *2. For stable device operation, connect a 0.01µF or larger ceramic chip capacitor between VDD and VSS, mounted close (within approximately 3mm) to the chip. Also, use the thickest wiring possible between the IC and capacitor.
- * Operation outside the recommended operating conditions may adversely affect reliability. Use only within specified ratings.

9. ELECTRICAL CHARACTERISTICS

9.1. DC Characteristics

Measurement circuits 1 to 3 in "Conditions" are shown in "12. MEASUREMENT CIRCUITS." V_{DD} =2.25 to 3.63V, V_{SS} =0V, T_a =-40 to +125°C unless otherwise noted

Parameter	Symbol	Conditions	Conditions		TYP	MAX	Unit
Current consumption	I _{DDD} _3.3V	Measurement circuit 1,	V _{DD} =3.3V		39.0	49.0	A
(HD6 ver.)	I _{DDD} _2.5V	OE=Open, f ₀ =125MHz	V _{DD} =2.5V		35.5	45.5	mA
Current consumption	I _{DDE} _3.3V	Measurement circuit 1,	V _{DD} =3.3V		40.0	50.0	A
(HE6 ver)	I _{DDE} _2.5V	OE=Open, f ₀ =156.25MHz	V _{DD} =2.5V		36.5	46.5	mA
Current consumption	I _{DDL} _3.3V	Measurement circuit 1,	V _{DD} =3.3V		32.0	40.0	mA
(HL6B ver)	I _{DDL} _2.5V	OE=Open, f ₀ =25MHz	V _{DD} =2.5V		30.0	38.0	IIIA
Standby current	I_{STB}	Measurement circuit 1, OE=V _{SS}	T _a ≤+85°C T _a >+85°C			15 30	μΑ
High-level output voltage	V_{OH}	Management singuit 2. OUT	0.66		0.85	V	
Low-level output voltage	V _{OL}	Measurement circuit 2, OUT	-0.15		0.15	V	
Output leakage current	I_Z	Measurement circuit 3, OE=V _{SS} , OUT/OUTN			10	μΑ	
High-level input voltage	V_{IH}	Measurement circuit 1, OE		$0.7V_{DD}$			V
Low-level input voltage	$V_{\rm IL}$	Measurement circuit 1, OE				$0.3V_{DD}$	V
OE pull-up	R_{PU1}	Measurement circuit 1		0.2	1	8	ΜΩ
resistance	R_{PU2}	Measurement circuit 1		30	70	150	kΩ
Oscillator feedback resistance (HD6 ver.)	R_{FD}	Design value		1.1	2.2	3.3	kΩ
Oscillator feedback resistance (HE6 ver.)	R_{FE}	Design value		1.1	2.2	3.3	kΩ
Oscillator feedback resistance (HLxB ver)	R_{FL}	Design value		50	100	200	kΩ
Oscillator capacitance	C_{GD}	Design value,		1.6	2.0	2.4	рF
(HD6 ver.)	C_{DD}	Excludes parasitic capacitance *1		1.6	2.0	2.4	F-
Oscillator capacitance (HE6 ver.)	C _{GE}	Design value, Excludes parasitic capacitance	*1	0.8	1.0	1.2	pF
, , ,	C _{DE}		· · · · · · · · · · · · · · · · · · ·	0.8	1.0	1.2	_
Oscillator capacitance (HLxB ver)	C_{GL} C_{DL}	Design value, Excludes parasitic capacitance	*1	6.4	8.0 14.0	9.6 16.8	pF
	~DL	1	11.4	1 1.0	10.0		

^{*1.} Confirmed by sampling inspection of the monitor pattern on the wafer.

9.2. AC Characteristics

Measurement circuits 4 and 5 in "Conditions" are shown in "12. MEASUREMENT CIRCUITS." The conditions for each parameter assume the timing shown in "9.3 TIMING DIAGRAM."

9.2.1. 5062Hxx version

 V_{DD} =2.25 to 3.63V, V_{SS} =0V, T_a =-40 to +125°C unless otherwise noted

Parameter	Symbol	Conditions		MIN	TYP	MAX	Unit
Output duty cycle	Duty	Measurement circuit 4, Measurement of differential of	45		55	%	
Output amplitude	V_{OPP}	Measurement circuit 4, Single-ended output signal		0.4			V
Output rise time	f	Measurement circuit 4,	C _L =0pF (No-load)		200	400	ne
Output rise time	t _r	Measured 0.175V to 0.525V of single-ended output signal	$C_L=2pF^{*1}$		250	500	ps
Output fall time	4	Measurement circuit 4,	C _L =0pF (No-load)		200	400	ne
Output fall time	t_{f}	Measured 0.525V to 0.175V of single-ended output signal $C_L=2pF$			250	500	ps
Output disable time	t _{OD}	Measurement circuit 5, Tim OE=V _{IL} (falling edge) and or Hi-Z (see timing diagram for december 1).	utputs going			200	ns

^{*} The ratings above are values obtained by measurements using an NPC evaluation standard crystal element, standard testing jig, and evaluation package.

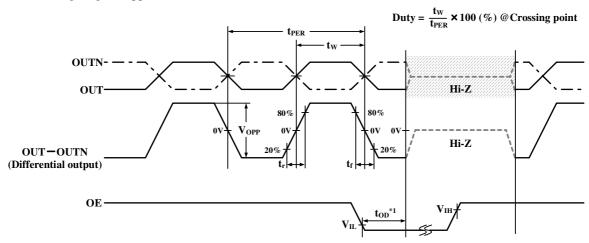
Ratings may have wide tolerances due to crystal element characteristics, evaluation jig, and package parasitic capacitance, so thorough evaluation is recommended.

^{*1.} CL contains the parasitic capacitance, such as evaluation board, package.

9.2.2. 5062HxxB version

$V_{DD}=2.25 \text{ to } 3$.63V, V _{SS} =0V, T _a :	$=-40 \text{ to } +125^{\circ}\text{C}$	unless of	nerwise noted

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Output duty cycle (differential outputs)	Duty	Measurement circuit 4, Measured at 0V crossover point of differential output signal	45		55	%
Output amplitude	V_{OPP}	Measurement circuit 4, Single-ended output signal	0.4			V
Output rise time	t _r	Measurement circuit 4, Measured 0.175V to 0.525V of single-ended output signal $C_L=2pF^{*1}$		250	500	ps
Output fall time	t_{f}	Measurement circuit 4, Measured 0.525V to 0.175V of single-ended output signal $C_L=2pF^{*1}$		350	700	ps
Output disable time	t _{OD}	Measurement circuit 5, Time measured OE=V _{IL} (falling edge) and outputs going Hi-Z (see timing diagram for details)			200	ns


^{*} The ratings above are values obtained by measurements using an NPC evaluation standard crystal element, standard testing jig, and evaluation package.

Ratings may have wide tolerances due to crystal element characteristics, evaluation jig, and package parasitic capacitance, so thorough evaluation is recommended.

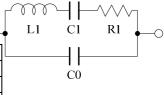
*1. CL contains the parasitic capacitance, such as evaluation board, package.

9.3. Timing Diagram

The timing diagram applies to the "Conditions" in the table in "9.2. AC Characteristics."

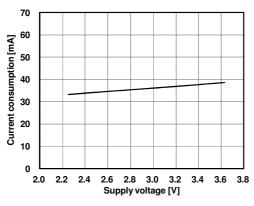
*1. The time, after OE falling edge and the output disable time (t_{OD}) has elapsed, taken until the outputs become high impedance (Hi-Z).

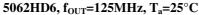
Figure 9-1. Timing diagram

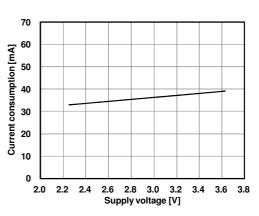

10. REFERENCE CHARACTERISTICS (Typical Characteristics)

The following characteristics assume the use of the following crystal element.

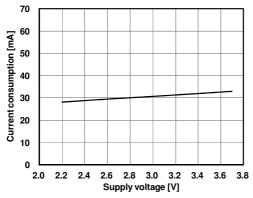
The characteristics will vary depending on the crystal used and the measurement conditions.

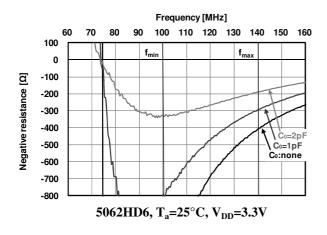

* Crystal oscillator element

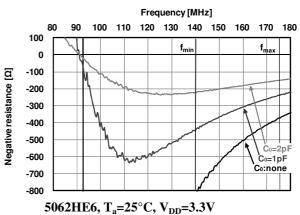

Parameter	f ₀ =125.00MHz	f ₀ =156.25MHz	$f_0=27MHz$
C0(pF)	1.8	1.2	1.1
$R1(\Omega)$	35	60	22
Oscillation mode	3rd overtone	3rd overtone	Fundamental

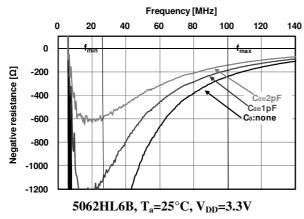


Crystal parameters


10.1. Current Consumption

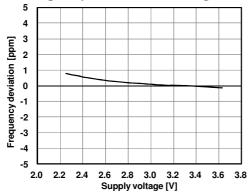


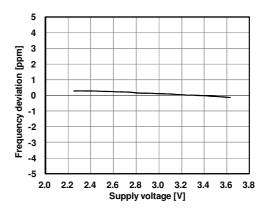

5062HE6, $f_{OUT}=156.25MHz$, $T_a=25$ °C

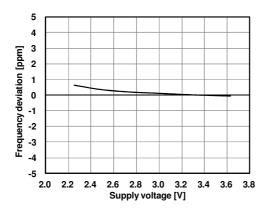


5062HL6B, f_{OUT} =27MHz, T_a =25°C

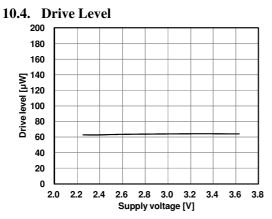
10.2. Negative Resistance

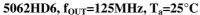


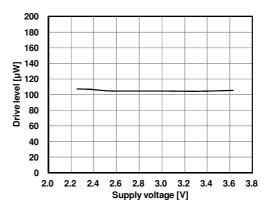


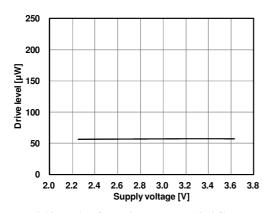

Captions in reference diagrams indicate measurement results for a crystal with equivalent capacitance C0, connected between the XT and XTN terminals of the 5062. The results are from measurements made with the Agilent 4396B using the NPC test jig. The characteristics may vary with measurement jig and measurement conditions.

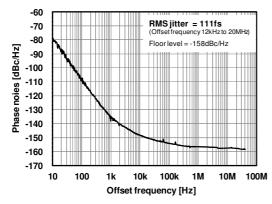
10.3. Frequency Deviation vs. Voltage

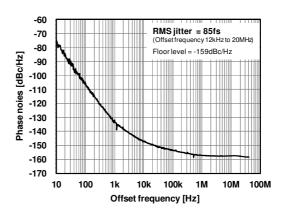





5062HD6, f_{OUT} =125MHz, T_a =25°C, 3.3V std. 5062HE6, f_{OUT} =156.25MHz, T_a =25°C, 3.3V std.

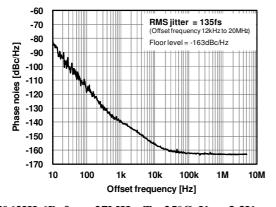

5062HL6B, $f_{OUT}=27MHz$, $T_a=25$ °C, 3.3V std.


 $5062HE6, f_{OUT}=156.25MHz, T_a=25^{\circ}C$

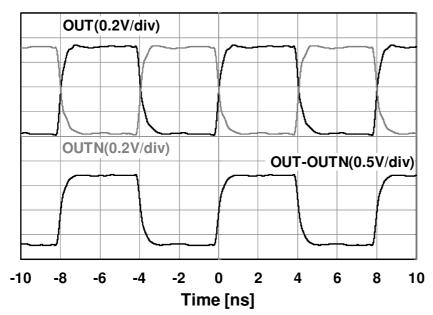


5062HL6B, f_{OUT} =27MHz, T_a =25°C

10.5. Phase Noise


Measurement instrument: Agilent E5052B Signal Source Analyzer

5062HD6, $f_{OUT}=125MHz$, $T_a=25$ °C, $V_{DD}=3.3V$

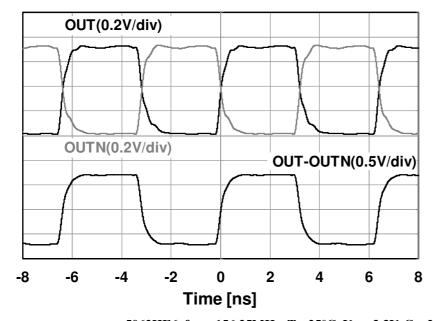

5062HE6, $f_{OUT}=156.25MHz$, $T_a=25$ °C, $V_{DD}=3.3V$

5062HL6B, $f_{OUT}=27MHz$, $T_a=25$ °C, $V_{DD}=3.3V$

10.6. Output Waveforms

Measuring instrument: Agilent 80604B Oscilloscope

Duty =
$$50.6\%$$


$$t_r(OUT) = 153ps$$

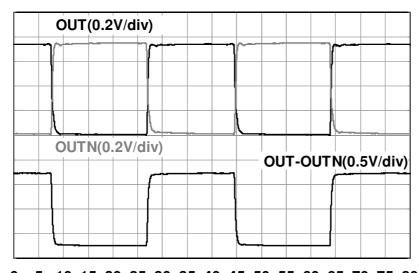
$$t_f(OUT) = 210ps$$

$$t_r(OUTN) = 157ps$$

$$t_f(OUTN) = 215ps$$

5062HD6, f_{OUT} =125MHz, T_a =25°C, V_{DD} =3.3V, C_L =2pF, R_S :none

Duty =
$$50.0\%$$


$$t_r(OUT) = 227ps$$

$$t_f(OUT) = 317ps$$

$$t_r(OUTN) = 187ps$$

$$t_f(OUTN) = 244ps$$

 $5062 HE6, f_{OUT} = 156.25 MHz, T_a = 25^{\circ}C, V_{DD} = 3.3 V, C_L = 2pF, R_S: none$

Duty = 50.6%

$$t_r(OUT) = 220ps$$

$$t_f(OUT) = 410ps$$

$$t_r(OUTN) = 210ps$$

$$t_f(OUTN) = 400ps$$

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 Time [ns]

 $5062 HL6B, f_{OUT} = 27 MHz, T_a = 25^{\circ}C, V_{DD} = 3.3 V, C_L = 2 pF, R_S = 330 hm$

11. FUNCTIONAL DESCRIPTION

11.1. OE Function

When OE goes V_{SS} , the OUT/OUTN outputs stop and become high impedance. This function is used to disable the operation of the device.

OE input	OUT/OUTN outputs	Oscillator circuit
V _{DD} or Open	f ₀ output	Operating
V_{SS}	Hi-Z	Stopped

11.2. Power Saving Pull-up Resistor

The OE terminal pull-up resistance switches between R_{PU1} and R_{PU2} , depending on the input level (V_{DD} or V_{SS}).

When the OE terminal is held V_{SS} , the built-in OE terminal pull-up resistance increases (R_{PU1}), reducing the current consumed by the pull-up resistance when the outputs are disabled.

When the device is operating with the OE terminal V_{DD} or open circuit, the pull-up resistance decreases (R_{PU2}), reducing internal susceptibility to the effects of external noise. The OE terminal is held V_{DD} internally to prevent problems that might otherwise cause the outputs to stop abruptly.

11.3. Oscillation Detection Function

The IC has a built-in oscillation detection circuit.

The oscillation detection circuit disables the output circuit when the oscillator starts until the oscillation becomes stable. This function limits the danger of unstable oscillation when the oscillator starts after power is first applied or the output is enabled.

11.4. C0 cancellation circuit

Oscillation circuit with a built-in C0 cancellation circuit provides a fixed compensation amount to cancel the effect of the crystal C0. It reduces the C0 parameter in the equivalent circuit, reducing the shallow negative resistance for increasing values of C0.

This cancellation circuit makes it easier to maintain the oscillation margin.

12. MEASUREMENT CIRCUITS

These measurement circuits are used for DC and AC characteristics evaluation.

Resistance "R_S" is not attached to Hxx version.

Resistance " R_S " is attached to HxxB version.

■ Measurement circuit 1 Measurement parameters: I_{DD}, I_{STB}, V_{IH}, V_{IL}, R_{PU1}, R_{PU2}

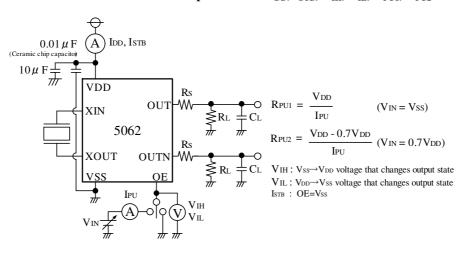


Figure 12-1. Measurement circuit 1

ullet Measurement circuit 2 Measurement parameters: V_{OH}, V_{OL}

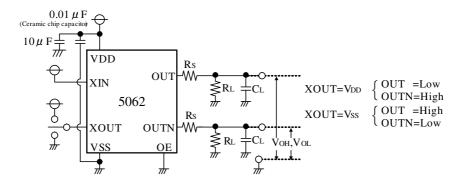


Figure 12-2. Measurement circuit 2

Measurement circuit 3 Measurement parameter: Iz

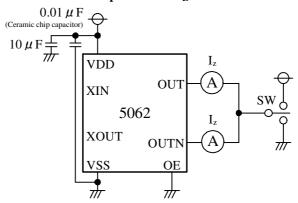


Figure 12-3. Measurement circuit 3

ullet Measurement parameters: Duty, V_{OPP} , t_r , t_f

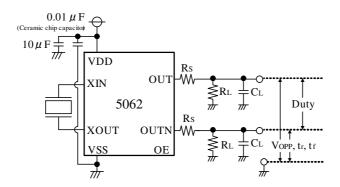


Figure 12-4. Measurement circuit 4

• Measurement circuit 5 Measurement parameter t_{OD}

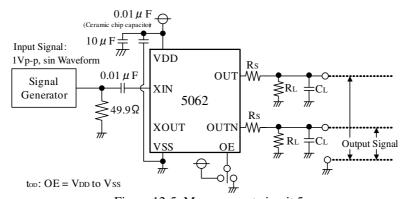
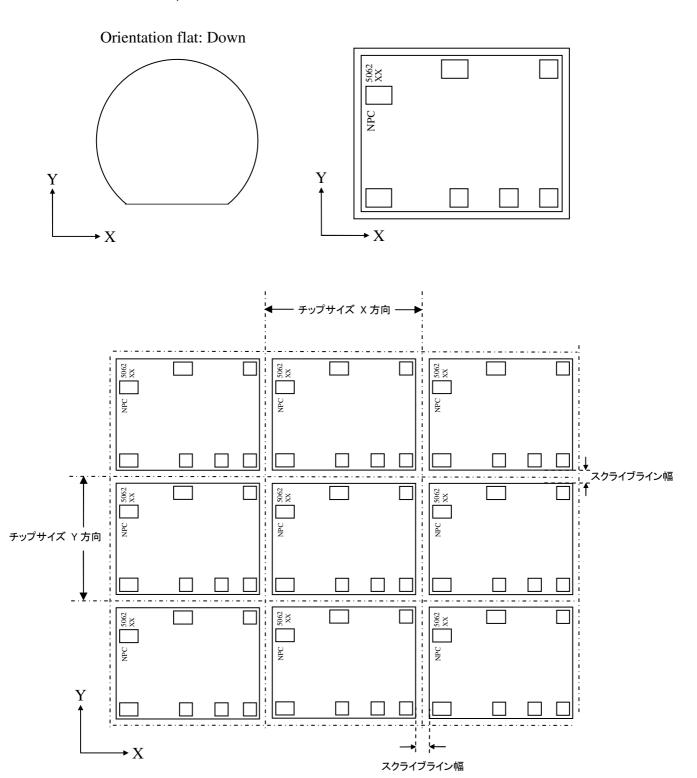



Figure 12-5. Measurement circuit 5

13. WAFER SURFACE DIAGRAM

Wafer size: $150 \text{mm} \pm 0.5 \text{mm}$

Scribe line width: 70µm

14. USAGE AND PRECAUTIONS

This product is designed and manufactured to the generally accepted standards of reliability as expected for use in general electronic and electrical equipment, such as personal equipment, machine tools, and measurement equipment. This product is not designed and manufactured to be used in any other special equipment requiring extremely high level of reliability and safety, such as aerospace equipment, nuclear power control equipment, medical equipment, transportation equipment, disaster prevention equipment, security equipment.

If you wish to use this product in equipment requiring extremely high level of reliability, please contact our sales department or representative in advance.

In the event that this product is used in such equipment, please take scrupulous care and apply fail-safe techniques including redundancy and malfunction prevention in order to prevent damage to life, health, property, or infrastructure etc. in case there is some malfunction in the product.

Please pay your attention to the following points at time of using the products shown in this document.

- 1. The products shown in this document (hereinafter "Products") are designed and manufactured to the generally accepted standards of reliability as expected for use in general electronic and electrical equipment, such as personal equipment, machine tools and measurement equipment. The Products are not designed and manufactured to be used in any other special equipment requiring extremely high level of reliability and safety, such as aerospace equipment, nuclear power control equipment, medical equipment, transportation equipment, disaster prevention equipment, security equipment. The Products are not designed and manufactured to be used for the apparatus that exerts harmful influence on the human lives due to the defects, failure or malfunction of the Products.
 - If you wish to use the Products in that apparatus, please contact our sales section in advance.
 - In the event that the Products are used in such apparatus without our prior approval, we assume no responsibility whatsoever for any damages resulting from the use of that apparatus.
- 2. NPC reserves the right to change the specifications of the Products in order to improve the characteristics or reliability thereof.
- 3. The information described in this document is presented only as a guide for using the Products. No responsibility is assumed by us for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of the third parties. Then, we assume no responsibility whatsoever for any damages resulting from that infringements.
- 4. The constant of each circuit shown in this document is described as an example, and it is not guaranteed about its value of the mass production products.
- 5. In the case of that the Products in this document falls under the foreign exchange and foreign trade control law or other applicable laws and regulations, approval of the export to be based on those laws and regulations are necessary. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

2-9-4, Taito, Taito-ku, Tokyo 110-0016, Japan Telephone: +81-3-6747-5300 Facsimile: +81-3-6747-5303 http://www.npc.co.jp/ Email:sales@npc.co.jp

DE170141E 2017.12