

OVERVIEW

The 5059H series are 32.768kHz output and 125°C operation crystal oscillator module ICs with divide-by-512 (or divide-by-1024) frequency, AT-cut crystal 16.777216MHz (or 33.554432MHz) oscillator circuit built-in.

It is possible to generate a 32.768kHz output crystal oscillator with excellent temperature characteristics by using AT-cut crystal.

There are 3 pad layout package options available for optimized mounting, making these devices ideal for miniature crystal oscillators.

FEATURES

- Wide range of operating supply voltage: 1.6 to 5.5V
- Oscillation frequency(fundamental oscillator):16.777216MHz or 33.554432MHz
 Standby function
- Output frequency: 32.768kHz (oscillation frequency divided by 512 or 1024)
- -40 to +125°C operating temperature range
- Regulated voltage drive oscillator circuit for reduced power consumption and crystal drive current
- 3 pad layout options for mounting 5059HAx: for Flip Chip Bonding 5059HBx: for Wire Bonding(Type I)

5059HCx: for Wire Bonding(Type II)

- Oscillation capacitors C_G,C_D built-in

High impedance in standby mode, oscillator stops

- Power-saving pull-up resistor built-in
- ± 1 mA output drive capability ($T_a=-40$ to +85°C) ± 0.8 mA output drive capability (T_a =-40 to +125°C)
- 50±5% output duty (1/2VDD)
- Wafer form (WF5059Hxx)
- Chip form (CF5059Hxx)

APPLICATIONS

■ 32.768kHz output crystal oscillator modules

SERIES CONFIGURATION

Version*1	Oscillation frequency[MHz]	Oscillation cap	pacitors ^{*2} [pF]	Output	DAD lovent
version	(fundamental oscillator)	$\mathbf{C}_{\mathbf{G}}$	C _D	frequency[kHz]	PAD layout
5059HAA				32.768	Flip Chip Bonding
5059HBA	16.777216	3	2	(f _{OSC} /512)	Wire Bonding Type I
5059HCA				(108(/312)	Wire Bonding Type II
5059HAB				22.769	Flip Chip Bonding
5059HBB	33.554432	2	1	32.768 (f _{OSC} /1024)	Wire Bonding Type I
5059HCB				(10SC/1024)	Wire Bonding Type ${\rm I\hspace{1em}I}$

^{*1.} It becomes WF5059Hxx in case of the wafer form and CF5059Hxx in case of the chip form.

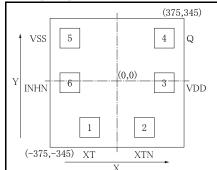
ORDERING INFORMATION

Device	Package	Version Name
WF5059Hxx-4	Wafer form	WF5059H□□−4 Form WF: Wafer form CF: Chip(Die) form Oscillation frequency A:16.777216MHz B:33.554432MHz
CF5059Hxx-4	Chip form	PAD layout A:For Flip Chip Bonding B:For Wire Bonding(Type I) C:For Wire Bonding(Type II)

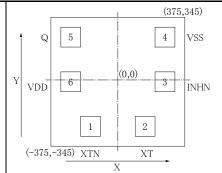
^{*2.} The oscillation capacitors do not contain parasitic capacitance.

PAD LAYOUT

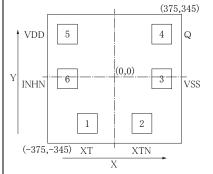
■ WF5059HAx


(For Flip Chip Bonding)

■ CF5059HBx


(For Wire Bonding (Type I))

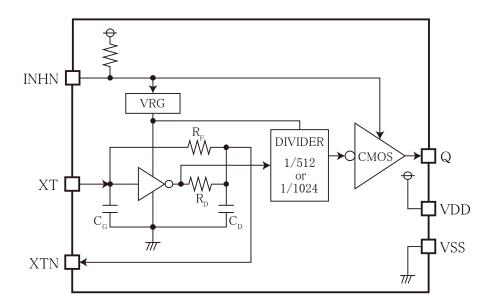
(For Wire Bonding (Type II))


• CF5059HCx

Chip size: 0.75×0.69mm
Chip thickness: 130μm
PAD size: 80μm
Chip base: Vss level

Chip size: 0.75×0.69mm Chip thickness: 130µm PAD size: 80µm Chip base: Vss level

Chip size: 0.75×0.69mm Chip thickness: 130µm PAD size: 80µm Chip base: Vss level


PAD COORDINATES

PAD	PAD coordinates[μm]			
No.	X	Y		
1	-146	-235		
2	146	-235		
3	265	-41		
4	265	186		
5	-265	186		
6	-265	-41		

PIN DESCRIPTION

	PAD No.		Pin	Function
5059HAx	5059HBx	5059HCx		
1	2	1	XT	Crystal connection pins.
2	1	2	XTN	Crystal is connected between XT and XTN.
3	6	5	VDD	(+)supply voltage
4	5	4	Q	Output(32.768kHz)
5	4	3	VSS	(-)ground
6	3	6	INHN	Input pin controlled output state(oscillator stops when LOW),Power-saving pull-up resistor built-in

BLOCK DIAGRAM

SPECIFICATIONS

Absolute Maximum Ratings

Vss=0V

Parameter	Symbol	Condition	Rating	Unit
Supply voltage range*1	V_{DD}	Between VDD and VSS	-0.3 to +7.0	V
Input voltage range*1*2	V_{IN}	Input pins	-0.3 to VDD+0.3	V
Output voltage range*1*2	V _{OUT}	Output pins	-0.3 to VDD+0.3	V
Output current*3	I_{OUT}	Q pin	±3	mA
Junction temperature*3	T_j		150	°C
Storage temperature range*4	T _{STG}	Chip form, Wafer form	-55 to +150	°C

^{*1.} This parameter rating is the values that must never exceed even for a moment. This product may suffer breakdown if this parameter rating is exceeded.

Operation and characteristics are guaranteed only when the product is operated at recommended operating conditions.

Recommended Operating Conditions

Vss=0V

Parameter	Symbol	Condition			Rating		Unit
r ar ameter	Symbol	Condid	IOII	MIN	TYP	MAX	Unit
Oscillator frequency	f	V _{DD} =1.6 to 5.5V	5059HxA ver.		16.777216		MHz
Oscillator nequency	f_{OSC}	V _{DD} -1.0 to 3.3 v	5059HxB ver.		33.554432		IVIITIZ
Output frequency	f_{OUT}	V _{DD} =1.6 to 5.5V, C _{LOUT} =15pF			32.768		kHz
Operating supply voltage	V_{DD}	Between VDD and V	Between VDD and VSS*1			5.5	V
Input voltage	V _{IN}	Input pins		V_{SS}		V_{DD}	V
Operating temperature	Ta			-40		+125	°C
Output load capacitance	C_{LOUT}	Q output				15	pF

^{*1.} Mount a ceramic chip capacitor that is larger than 0.01µF proximal to IC (within approximately 3mm) between VDD and VSS in order to obtain stable operation of 5059H series. In addition, the wiring pattern between IC and capacitor should be as wide as possible.

Note. Since it may influence the reliability if it is used out of range of recommended operating conditions, this product should be used within this range.

^{*2.} V_{DD} is a V_{DD} value of recommended operating conditions.

^{*3.} Do not exceed the absolute maximum ratings. If they are exceeded, a characteristic and reliability will be degraded.

^{*4.} When stored in nitrogen or vacuum atmosphere applied to IC itself only (excluding packaging materials).

Electrical Characteristics DC Characteristics

 V_{DD} =1.6 to 5.5V, V_{SS} =0V, T_a = -40 to +125°C unless otherwise noted.

December	Dozometer Conditions			Rating	ess outer w	Unit	
Parameter	Symbol	Conditions		MIN	TYP	MAX	Unit
Qpin	V	Measurement circuit 3, I _{OH} =-1mA, T _a =-	Measurement circuit 3, I _{OH} =1mA, T _a =40 to +85°C			V	V
HIGH-level output voltage	V_{OH}	Measurement circuit 3, I _{OH} =-0.8mA, T _a i	=-40 to +125°C	V _{DD} -0.4		V_{DD}	V
Q pin	37	Measurement circuit 3, I _{OL} =1mA, T _a =-/	10 to +85°C	0		0.4	X 7
LOW-level output voltage	$V_{ m OL}$	Measurement circuit 3, I _{OH} =0.8mA, T _a =	=-40 to +125°C	0		0.4	V
INHN pin HIGH-level input voltage	$V_{ m IH}$	Measurement circuit 4		0.7V _{DD}			V
INHN pin LOW-level input voltage	$V_{ m IL}$	Measurement circuit 4				$0.3V_{DD}$	V
Qpin	T	Measurement circuit 5,	Q=V _{DD}			10	4
Output leakage current	I_Z	INHN="Low"	Q=V _{SS}	-10			μΑ
	I _{DD1} _5.0V	Measurement circuit 1,	V _{DD} =5.0V		70	175	
	I _{DD1} _3.3V	INHN="OPEN", output load=15pF,	V _{DD} =3.3V		65	163	
	I _{DD1} _2.5V	f _{OSC} =16.777216MHz,	V _{DD} =2.5V		63	158	μΑ
Current consumption	I _{DD1} _1.8V	f _{OUI} =32.768kHz, T _a =40 to +125°C	V _{DD} =1.8V		60	150	
(HxA ver. : divide-by-512 frequency output)	I _{DD2} _5.0V	Measurement circuit 1,	V _{DD} =5.0V		70	140	
	I _{DD2} _3.3V	INHN="OPEN", output load=15pF,	V _{DD} =3.3V		65	130	μΑ
	I _{DD2} _2.5V	f _{OSC} =16.777216MHz,	V _{DD} =2.5V		63	126	
	I _{DD2} _1.8V	f _{OUT} =32.768kHz, T _a =-40 to +85°C	V _{DD} =1.8V		60	120	
	I _{DD3} _5.0V	Measurement circuit 1,	V _{DD} =5.0V		140	280	
	I _{DD3} _3.3V	INHN="OPEN",	V _{DD} =3.3V		130	260	
	I _{DD3} _2.5V	output load=15pF, f _{OSC} =33.554432MHz,	$V_{DD}=2.5V$		126	252	μΑ
Current consumption	I _{DD3} _1.8V	f _{OUI} =32.768kHz,	$V_{DD}=1.8V$		120	240	
(HxB ver. : divide-by-1024	I _{DD4} _5.0V	T _a =-40 to +125°C Measurement circuit 1,	V_{DD} =5.0V		140	245	
frequency output)	I _{DD4} _3.0V	INHN="OPEN",	$V_{DD}=3.0V$ $V_{DD}=3.3V$		130	228	
		output load=15pF, f _{OSC} =33.554432MHz,					μΑ
	I _{DD4} _2.5V	f _{OUI} =32.768kHz,	$V_{DD}=2.5V$		126	221	
	I _{DD4} _1.8V	T _a =-40 to +85°C	V _{DD} =1.8V		120	210	
Standby current	I_{ST}	Measurement circuit 1,INHN="Low",T	•			10	μΑ
		Measurement circuit 1,INHN="Low",Ta=40 to +125°C				20	
INHN pin pull-up resistance	R _{PU1}	Measurement circuit 6		0.6	2	20	ΜΩ
	R _{PU2}	Measurement circuit 6		50	100	200	kΩ
Oscillator feedback resistance	R _f			150	300	600	kΩ
Oscillator capacitance (HxA ver. : divide-by-512	C_{G}	Design value (a monitor pattern on a wa	fer is tested),	2.25	3.00	3.75	pF
frequency output)	C_D	Excluding parasitic capacitance.		1.50	2.00	2.50	
Oscillator capacitance (HxB ver. : divide-by-1024	C_{G}	Design value (a monitor pattern on a wa	fer is tested),	1.50	2.00	2.50	рF
frequency output)	C_D	Excluding parasitic capacitance.		0.75	1.00	1.25	ρı

AC Characteristics

17 1 ()	C CX 1 X 1	αr	104 11050	0 1	
$V_{DD}=IhI0$	IN N V CC	=00 1.=-4	4U to +1/5°	(liniess	otherwise noted

Parameter	Symbol	Conditions		Rating		
rarameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Q pin Output rise time	t _r	Measurement circuit 1, C_{LOUT} =15pF, 0.1 $V_{DD} \rightarrow$ 0.9 V_{DD}		50	200	ns
Q pin Output fall time	$t_{\rm f}$	Measurement circuit 1, C_{LOUT} =15pF, 0.9 $V_{DD} \rightarrow$ 0.1 V_{DD}		50	200	ns
Q pin Output duty cycle	DUTY	Measurement circuit 1, T _a =25°C, C _{LOUT} =15pF	45	50	55	%
Q pin Output disable delay time	t _{OD}	Measurement circuit 2, T _a =25°C, C _{LOUT} ≤15pF			1	μs

Timing chart

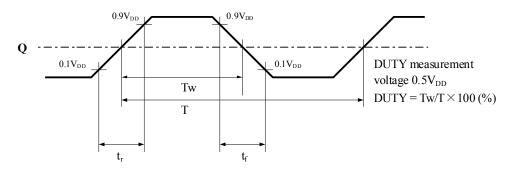
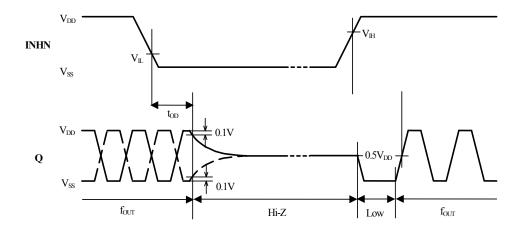



Figure 1.Output switching waveform

When INHN goes HIGH to LOW, the Q output becomes high impedance.

When INHN goes LOW to HIGH, the Q output goes LOW once and then becomes normal output operation after having detected oscillation signals.

Figure 2.Output disable and oscillation start timing chart

FUNCTIONAL DESCRIPTION

INHN Function

Q output is stopped and becomes high impedance.

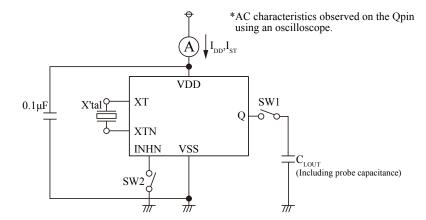
INHN	Q	Oscillator
HIGH(Open)	$ m f_{OUT}$	Operating
LOW	Hi-Z	Stopped

Power Saving Pull-up Resistor

The INHN pin pull-up resistance changes its value to R_{PU1} or R_{PU2} in response to the input level (HIGH or LOW).

When INHN is tied to LOW level, the pull-up resistance becomes large (R_{PU1}), thus reducing the current consumed by the resistance. When INHN is left open circuit or tied to HIGH level, the pull-up resistance becomes small (R_{PU2}), thus internal circuit of INHN becomes HIGH level.

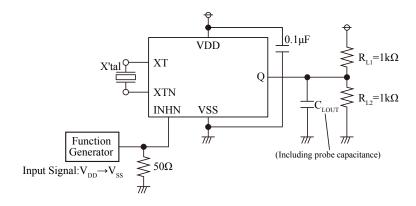
Consequently, the IC is less susceptible to the effects of noise, helping to avoid problems such as the output stopping suddenly.


Oscillation Detection Function

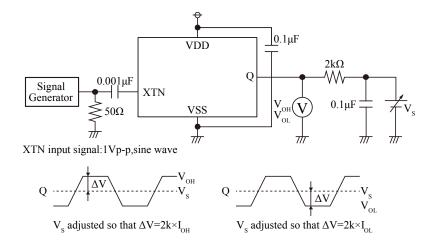
The 5059H series have an oscillation detection circuit.

The oscillation detection circuit disables the output until crystal oscillation becomes stable when oscillation circuit starts up. This function avoids the abnormal oscillation in the initial power up and in a reactivation by INHN.

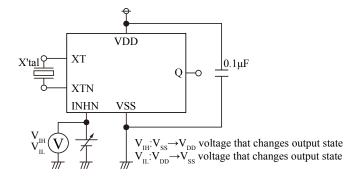
MEASUREMENT CIRCUITS MEASUREMENT CIRCUIT 1


Measurement Parameters : I_{DD} , I_{ST} , DUTY, t_r , t_f

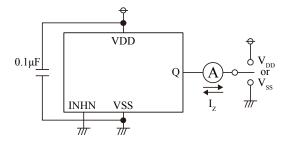
Parameter	SW1	SW2
I_{DD}	ON	OFF
I_{ST}	ON or OFF	ON
DUTY, t_r , t_f	ON	OFF


MEASUREMENT CIRCUIT 2

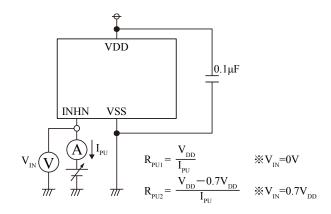
Measurement Parameters: t_{OD}


MEASUREMENT CIRCUIT 3

Measurement Parameters : $V_{\text{OH}}, V_{\text{OL}}$


MEASUREMENT CIRCUIT 4

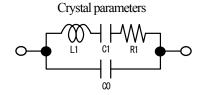
 $Measurement\ Parameters: V_{IH}, V_{IL}$


MEASUREMENT CIRCUIT 5

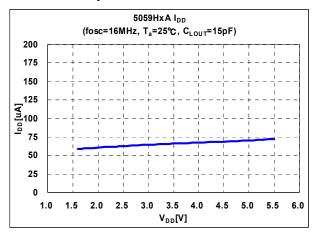
Measurement Parameters : I_Z

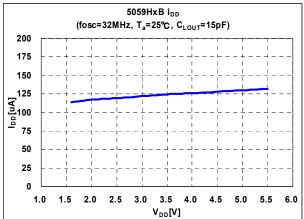
MEASUREMENT CIRCUIT 6

Measurement Parameters : R_{PU1} , R_{PU2}

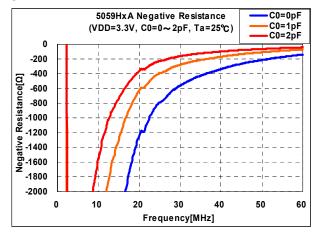


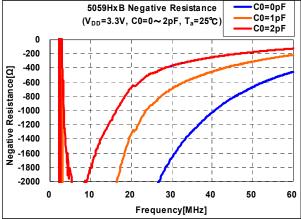
REFERENCE DATA


The following characteristics are measured using the crystal below. Note that the characteristics will vary with the crystal used.

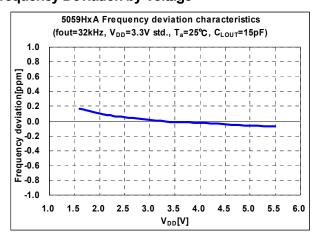

Crystal used for measurement

Parameter	f ₀ =16MHz	f ₀ =32MHz
C0(pF)	1.1698	1.5927
R1(Ω)	16.824	13.476

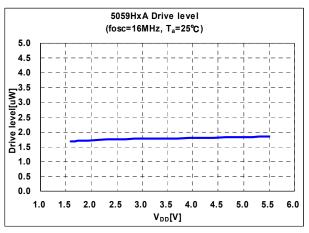


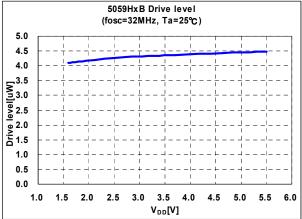

Current Consumption

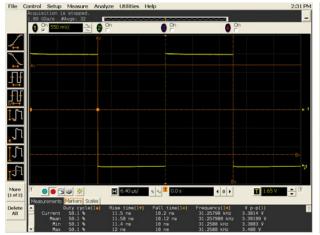
Negative Resistance



The figures show the measurement result of the crystal equivalent circuit C0 capacitance, connected between the XT and XTN pins. They were performed with Agilent 4396B using the NPC test jig.


They may vary in a measurement jig, and measurement environment.


Frequency Deviation by Voltage




Drive Level

Output Waveform

5059HxA, V_{DD} =3.3V, C_{LOUT} =15pF, T_a =25°C

 $5059HxB, V_{DD}=3.3V, C_{LOUT}=15pF, T_a=25^{\circ}C$

Please pay your attention to the following points at time of using the products shown in this document.

- 1. The products shown in this document (hereinafter "Products") are designed and manufactured to the generally accepted standards of reliability as expected for use in general electronic and electrical equipment, such as personal equipment, machine tools and measurement equipment. The Products are not designed and manufactured to be used in any other special equipment requiring extremely high level of reliability and safety, such as aerospace equipment, nuclear power control equipment, medical equipment, transportation equipment, disaster prevention equipment, security equipment. The Products are not designed and manufactured to be used for the apparatus that exerts harmful influence on the human lives due to the defects, failure or malfunction of the Products. If you wish to use the Products in that apparatus, please contact our sales section in advance.
 In the event that the Products are used in such apparatus without our prior approval, we assume no responsibility whatsoever for any
 - In the event that the Products are used in such apparatus without our prior approval, we assume no responsibility whatsoever for any damages resulting from the use of that apparatus.
- 2. NPC reserves the right to change the specifications of the Products in order to improve the characteristics or reliability thereof.
- 3. The information described in this document is presented only as a guide for using the Products. No responsibility is assumed by us for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of the third parties. Then, we assume no responsibility whatsoever for any damages resulting from that infringements.
- 4. The constant of each circuit shown in this document is described as an example, and it is not guaranteed about its value of the mass production products.
- 5. In the case of that the Products in this document falls under the foreign exchange and foreign trade control law or other applicable laws and regulations, approval of the export to be based on those laws and regulations are necessary. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

1-9-9, Hatchobori, Chuo-ku, Tokyo 104-0032, Japan Telephone: +81-3-5541-6501 Facsimile: +81-3-5541-6510 http://www.npc.co.jp/ Email:sales@npc.co.jp

ND12033-E-01 2013.02