NPC

OVERVIEW

The 5053 series are miniature crystal oscillator module ICs supported 80MHz to 170MHz fundamental oscillation mode.

The Oscillator circuit stage has voltage regulator drive, significantly reducing current consumption and crystal current, compared with existing devices, and significantly reducing the oscillator characteristics supply voltage dependency.

There are 3 pad layout package options available for optimized mounting, making these devices ideal for miniature crystal oscillators.

FEATURES

- Wide range of operating supply voltage: 1.60 to 3.63V
- Regulated voltage drive oscillator circuit for reduced power consumption and crystal drive current
- Optimized low crystal drive current oscillation for miniature crystal units
- 3 pad layout options for mounting 5053Ax: for Flip Chip Bonding 5053Bx: for Wire Bonding (Type I) 5053Cx: for Wire Bonding (Type II)
- Recommended oscillation frequency range (fundamental oscillator): 80 to 133MHz (x1 ver.) 100 to 170MHz (xP ver.)

- -40 to 105°C operating temperature range
- Standby function

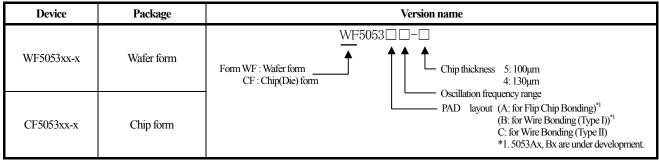
High impedance in standby mode, oscillator stops

- CMOS output
- 50 \pm 5% output duty (1/2V_{DD})
- ±8mA output drive capability
- 15pF output load capacitance
- Wafer form (WF5053xx)
- Chip form (CF5053xx)

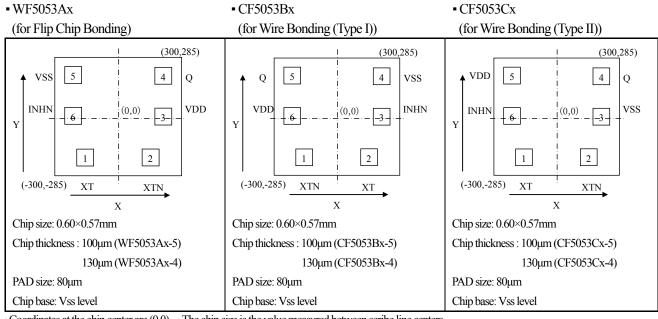
APPLICATIONS

• 3.2×2.5, 2.5×2.0, 2.0×1.6 size miniature crystal oscillator modules

SERIES CONFIGURATION


Version ^{*1*2}	Operating supply voltage range [V]	Recommended oscillation frequency range ^{*3} [MHz]	C0 cancellation circuit / Recommended C0 value [pF]	PAD layout	
(5053A1)				Flip Chip Bonding	
(5053B1)	1.60 to 3.63	80 to 133	Yes/1 to 2	Wire Bonding Type I	
5053C1				Wire Bonding Type II	
(5053AP)				Flip Chip Bonding	
(5053BP)	2.25 to 3.63	2.25 to 3.63 100 to 170	100 to 170	Yes/1 to 2	Wire Bonding Type I
5053CP				Wire Bonding Type II	

*1. The version name in parentheses is being developed.


*2. It becomes WF5053xx in case of the wafer form and CF5053xx in case of the chip form.

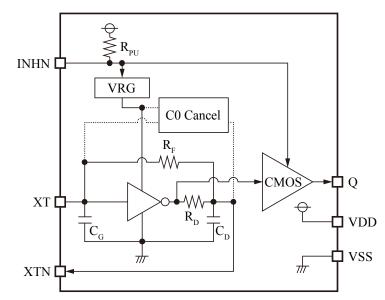
*3. The oscillation frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillation frequency range is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

ORDERING INFORMATION

PAD LAYOUT

· Coordinates at the chip center are (0,0). The chip size is the value measured between scribe line centers.

PAD COORDINATES


PAD	PAD coordinates[µm]			
No.	X	Y		
1	-145.2	-193.5		
2	145.2	-193.5		
3	208.5	-1.1		
4	208.5	193.5		
5	-208.5	193.5		
6	-208.5	-1.1		

PIN DESCRIPTION

	PAD No.		Pin	Function
$(5053Ax)^{*1}$	$(5053Bx)^{*1}$	5053Cx		
1	2	1	XT	Crystal connection pins.
2	1	2	XTN	Crystal is connected between XT and XTN.
3	6	5	VDD	(+) supply voltage
4	5	4	Q	Output pin
5	4	3	VSS	(-) ground
6	3	6	INHN	Input pin controlled output state (oscillator stops when LOW), Power-saving pull-up resistor built-in

*1. 5053Ax, Bx are under development.

BLOCK DIAGRAM

SPECIFICATIONS Absolute Maximum Ratings

V_{SS}=0V

Parameter	Symbol	Condition	Rating	Unit
Supply voltage range ^{*1}	V _{DD}	Between VDD and VSS	-0.3 to +4.0	V
Input voltage range ^{*1*2}	$V_{\mathbb{I}\!N}$	Input pins	-0.3 to VDD+0.3	V
Output voltage range ^{*1*2}	V _{OUT}	Output pins	-0.3 to VDD+0.3	V
Output current ^{*3}	I _{OUT}	Q pin	±20	mA
Junction temperature ^{*3}	Tj		150	°C
Storage temperature range ^{*4}	T _{STG}	Chip form, Wafer form	-55 to +150	°C

*1. This parameter rating is the values that must never exceed even for a moment. This product may suffer breakdown if this parameter rating is exceeded. Operation and characteristics are guaranteed only when the product is operated at recommended operating conditions.

*2. V_{DD} is a V_{DD} value of recommended operating conditions.

*3. Do not exceed the absolute maximum ratings. If they are exceeded, a characteristic and reliability will be degraded.

*4. When stored in nitrogen or vacuum atmosphere applied to IC itself only (excluding packaging materials).

Recommended Operating Conditions

V_{SS}=0V

Demonstern	S-muh al				Rating		
Parameter	Symbol	Condition		MIN	ТҮР	MAX	Unit
Oscillator frequency ^{*1}	£	V _{DD} =1.60 to 3.63V	5053x1 ver.	80		133	MHz
	f_{OSC}	V _{DD} =2.25 to 3.63V	5053xP ver.	100		170	
Output frequency	C	V_{DD} =1.60 to 3.63V, $C_L \le 15 pF$	5053x1 ver.	80		133	MHz
	f_{OUT}	V_{DD} =2.25 to 3.63V, $C_L \le 15 pF$	5053xP ver.	100		170	
O continue and a desc	N	Between VDD and VSS ^{*2}	5053x1 ver.	1.60		3.63	V
Operating supply voltage	V_{DD}		5053xP ver.	2.25			
Input voltage	V _{IN}	Input pins		V _{SS}	-	V _{DD}	V
Operating temperature	Ta			-40	-	+105	°C
Output load capacitance	CL	Q output		-	-	15	pF

*1. The oscillation frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillation frequency range is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

*2. Mount a ceramic chip capacitor that is larger than 0.01µF proximal to IC (within approximately 3mm) between VDD and VSS in order to obtain stable operation of 5053 series. In addition, the wiring pattern between IC and capacitor should be as wide as possible.

Note. Since it may influence the reliability if it is used out of range of recommended operating conditions, this product should be used within this range.

Electrical Characteristics DC Characteristics

Parameter	Symbol	mbol Condition			Rating MIN TYP MAX		
raraineter	Symbol				ТҮР	MAX	Unit
HIGH-level output voltage	V	Q pin, measurement circuit 3, I_{OH} =-8mA T _a =-40 to +85°C		V _{DD} -0.4	-	V _{DD}	v
Thom-level output voltage	V _{OH}	Q pin, measurement circuit 3, I _{OH} =-8m.	A	V _{DD} -0.45	-	-	v
LOW-level output voltage	V _{OL}	Q pin, measurement circuit 3, I_{OL} =8mA T _a =40 to +85°C		0	-	0.4	v
		Q pin, measurement circuit 3, I _{OL} =8mA			-	0.45	
HIGH-level input voltage	V _{IH}	INHN pin, measurement circuit 4		0.7V _{DD}	-	-	V
LOW-level input voltage	V _{IL}	INHN pin, measurement circuit 4		-	-	0.3V _{DD}	V
		Q pin, measurement circuit 5,	V _{OH} =V _{DD}	-	-	10	
		INHN="Low", T_a =-40 to +85°C	V _{OL} =V _{SS}	-10	-	-	μΑ
Output leakage current	Iz	2 p,	V _{OH} =V _{DD}	-	-	100	
			V _{OL} =V _{SS}	-100	-	-	
	I _{DD}	5053x1(f _{OSC}), measurement circuit 1, no load, INHN="OPEN", f _{OSC} =125MHz, f _{OUT} =125MHz	V _{DD} =3.3V	-	6.3	11.0	mA
			V _{DD} =2.5V	-	4.7	8.5	
Current consumption ^{*1}			V _{DD} =1.8V	-	3.8	7.0	
	-00	5053xP(f _{OSC}), measurement circuit 1,	V _{DD} =3.3V	-	9.8	17.5	
		no load, INHN="OPEN", f _{0SC} =155MHz, f _{OUI} =155MHz	V _{DD} =2.5V	-	8	15	
Standby current	I _{ST}	Measurement circuit 1, INHN="Low" T _a =-40 to +85°C		-	-	10	μΑ
		Measurement circuit 1, INHN="Low"		-	-	100	
	R _{PU1}	Measurement circuit 6		0.8	3	24	MΩ
INHN pull-up resistance	R _{PU2}	Measurement circuit 6		30	70	150	kΩ
Oscillator feedback resistance	R _f	Design value		50	100	200	kΩ
	C _G	5053x1 ver.	Contractor D	0.8	1.0	1.2	
	CD	 Design value (a monitor pattern on a wafer is tested), Excluding parasitic capacitance. 		2.4	3.0	3.6	pF
Oscillator capacitance	C _G	5053xP ver.		0.8	1.0	1.2	
	CD	Design value (a monitor pattern on a wafer is tested), - Excluding parasitic capacitance.		2.4	3.0	3.6	pF

 V_{DD} =1.60 to 3.63V, V_{SS} =0V, T_a =-40 to +105°C unless otherwise noted.

*1. The consumption current I_{DD}(C_L) with a load capacitance(C_L) connected to the Q pin is given by the following equation, where I_{DD} is the no load consumption current and f_{OUT} is the output frequency.

 $I_{DD}(C_L)[mA] = I_{DD}[mA] + C_L[pF] \times V_{DD}[V] \times f_{OUT}[MHz] \times 10^{-3}$

AC Characteristics

				Rating		
Parameter	Symbol	Condition	MIN	ТҮР	MAX	Unit
	t _{r1}	Measurement circuit 1, C _L =15pF, $0.1V_{DD} \rightarrow 0.9V_{DD}$, V _{DD} =2.25 to 3.63V	-	1.0	2.0	
Output rise time		Measurement circuit 1, C _L =15pF, T _a =40 to +85°C $0.1V_{DD} \rightarrow 0.9V_{DD}$, V _{DD} =1.60 to 2.25V	-	1.5	2.5	ns
	t _{r2}	Measurement circuit 1, C _L =15pF, $0.1V_{DD} \rightarrow 0.9V_{DD}$, V _{DD} =1.60 to 2.25V	-	1.5	3.0	
Output fall time	t _{fl}	Measurement circuit 1, C _L =15pF, $0.9V_{DD} \rightarrow 0.1V_{DD}$, V _{DD} =2.25 to 3.63V	-	1.0	2.0	
		Measurement circuit 1, C _L =15pF, T _a =40 to +85°C $0.9V_{DD} \rightarrow 0.1V_{DD}$, V_{DD} =1.60 to 2.25V	-	1.5	2.5	ns
	t ₁₂	Measurement circuit 1, C _L =15pF, $0.9V_{DD} \rightarrow 0.1V_{DD}$, V_{DD} =1.60 to 2.25V	-	1.5	3.0	
Output duty cycle		5053x1 ver. Measurement circuit 1, $T_a=25^{\circ}C$, $C_L=15pF$, $V_{DD}=1.60$ to 3.63V	45	50	55	0/
	DUTY	5053xP ver. Measurement circuit 1, $T_a=25^{\circ}C$, $C_L=15pF$, $V_{DD}=2.25$ to 3.63V	45	50	55	%
Output disable delay time	t _{OD}	Measurement circuit 2, T _a =25°C, C _L ≤15pF	-	-	200	ns

 V_{DD} =1.60 to 3.63V, V_{SS} =0V, T_a =-40 to +105°C unless otherwise noted

The ratings above are values obtained by measurements using NPC evaluation standard crystal element on a standards testing jig.

Ratings may have wide tolerances due to crystal element characteristics; thorough evaluation is recommended.

Timing Chart

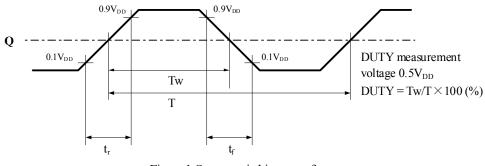


Figure 1.Output switching waveform

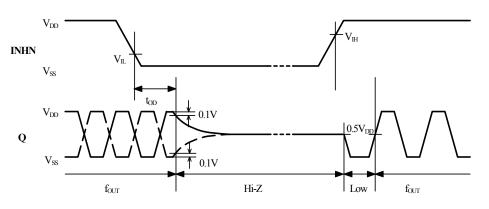


Figure 2.Output disable and oscillation start timing chart

FUNCTIONAL DESCRIPTION INHN Function

Q output is stopped and becomes high impedance.

INHN	Q	Oscillator
HIGH(Open)	f_{OUT}	Operating
LOW	Hi-Z	Stopped

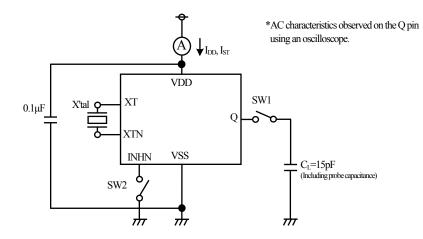
Power Saving Pull-up Resistor

The INHN pin pull-up resistance changes its value to RPU1 or RPU2 in response to the input level (HIGH or LOW).

When INHN is tied to LOW level, the pull-up resistance becomes large (R_{PU1}), thus reducing the current consumed by the resistance. When INHN is left open circuit or tied to HIGH level, the pull-up resistance becomes small (R_{PU2}), thus internal circuit of INHN becomes HIGH level.

Consequently, the IC is less susceptible to the effects of noise, helping to avoid problems such as the output stopping suddenly.

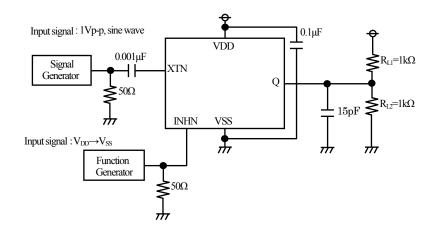
Oscillation Detection Function


The 5053 series incorporate an oscillation detection circuit. The oscillation detection circuit disables the output until the oscillator circuit starts up. This function avoids the problem where the oscillator does not start, due to abnormal oscillation conditions, where power is applied or when the oscillator is restarted using INHN.

C0 cancellation circuit

Oscillation circuit with a built-in C0 cancellation circuit provides a fixed compensation amount to cancel the effect of the crystal C0. It reduces the C0 parameter in the equivalent circuit, reducing the shallow negative resistance for increasing values of C0. This cancellation circuit makes it easier to maintain the oscillation margin.

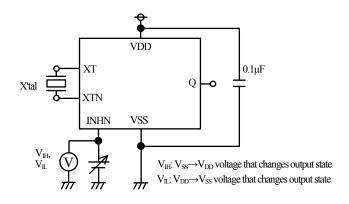
MEASUREMENT CIRCUITS MEASUREMENT CIRCUIT 1


Measurement Parameter: I_{DD} , I_{ST} , DUTY, t_r , t_f

Parameter	SW1	SW2
I _{DD}	OFF	OFF
I _{ST}	ON or OFF	ON
DUTY, t _r , t _f	ON	OFF

MEASUREMENT CIRCUIT 2

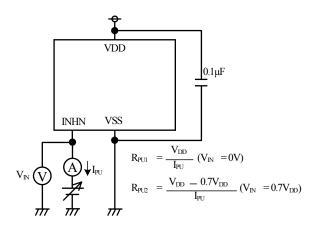
Measurement Parameter: toD


MEASUREMENT CIRCUIT 3

Measurement Parameter: V_{OH} , V_{OL}

MEASUREMENT CIRCUIT 4

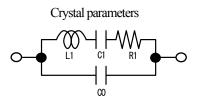
Measurement Parameter: V_{IH} , V_{IL}


MEASUREMENT CIRCUIT 5

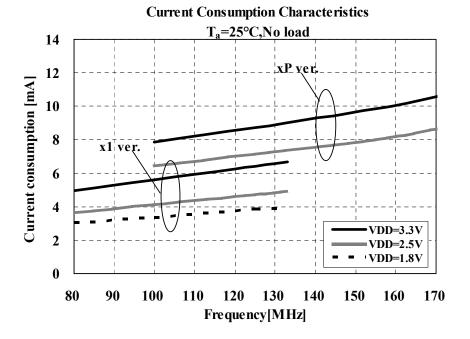
Measurement Parameter: I_Z

MEASUREMENT CIRCUIT 6

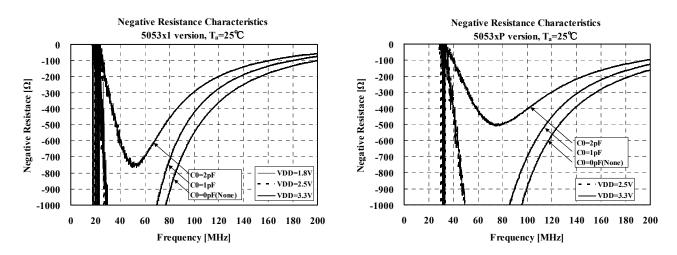
Measurement Parameter: R_{PU1}, R_{PU2}



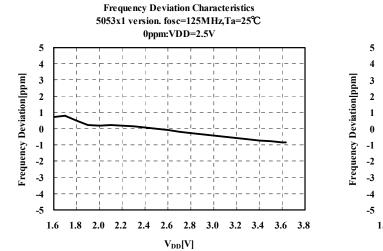
REFERENCE DATA

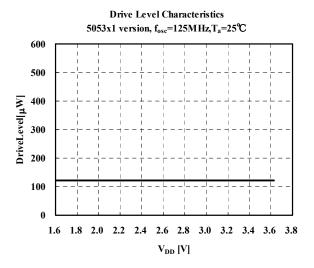

The following characteristics are measured using the crystal below. Note that the characteristics will vary with the crystal used.

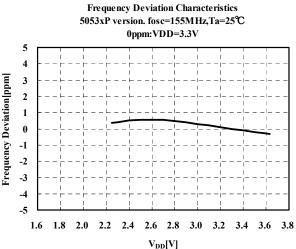
Crystal used for measurement

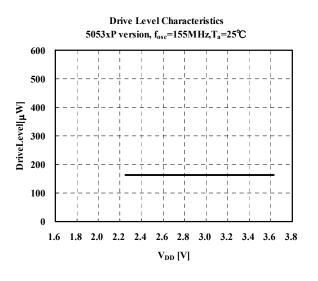

Parameter	125MHz	155MHz
C0(pF)	2.8	1.7
R1(Ω)	10	10

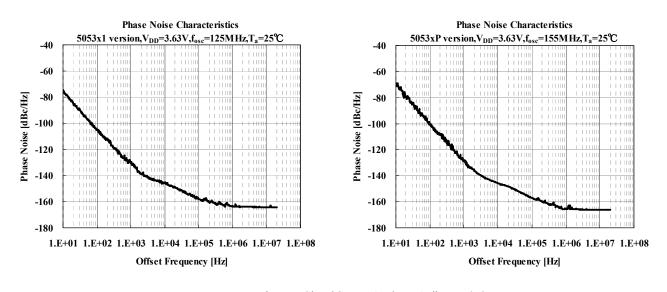
Current Consumption

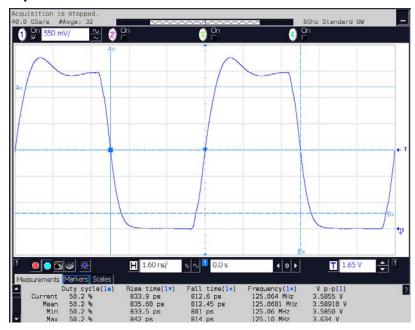

Negative Resistance


The figures show the measurement result of the crystal equivalent circuit C0 capacitance, connected between the XT and XTN pins. They were performed with Agilent 4396B using the NPC test jig.

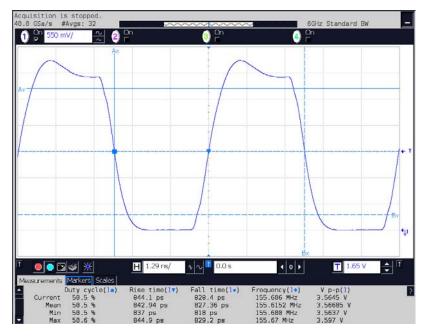

They may vary in a measurement jig, and measurement environment.


Frequency Deviation by Voltage





Phase Noise



Measurement equipment: Signal Source Analyzer Agilent E5052B

Output Waveform

x1 ver., V_{DD}=3.3V, f_{OUT}=125MHz, C_L=15pF, T_a=R.T.

xP ver., V_{DD} =3.3V, f_{OUT} =155MHz, C_{L} =15pF, T_{a} =R.T.

Measurement equipment: Oscilloscope Agilent 54855A

Please pay your attention to the following points at time of using the products shown in this document.

1. The products shown in this document (hereinafter "Products") are designed and manufactured to the generally accepted standards of reliability as expected for use in general electronic and electrical equipment, such as personal equipment, machine tools and measurement equipment. The Products are not designed and manufactured to be used in any other special equipment requiring extremely high level of reliability and safety, such as aerospace equipment, nuclear power control equipment, medical equipment, transportation equipment, disaster prevention equipment, security equipment. The Products are not designed and manufactured to be used for the apparatus that exerts harmful influence on the human lives due to the defects, failure or malfunction of the Products. If you wish to use the Products in that apparatus, please contact our sales section in advance.

In the event that the Products are used in such apparatus without our prior approval, we assume no responsibility whatsoever for any damages resulting from the use of that apparatus.

- 2. NPC reserves the right to change the specifications of the Products in order to improve the characteristics or reliability thereof.
- 3. The information described in this document is presented only as a guide for using the Products. No responsibility is assumed by us for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of the third parties. Then, we assume no responsibility whatsoever for any damages resulting from that infringements.
- 4. The constant of each circuit shown in this document is described as an example, and it is not guaranteed about its value of the mass production products.
- 5. In the case of that the Products in this document falls under the foreign exchange and foreign trade control law or other applicable laws and regulations, approval of the export to be based on those laws and regulations are necessary. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

1-9-9, Hatchobori, Chuo-ku, Tokyo 104-0032, Japan Telephone: +81-3-5541-6501 Facsimile: +81-3-5541-6510 http://www.npc.co.jp/ Email:sales@npc.co.jp

ND13016-E-01 2014.06