NPC

OVERVIEW

The 5052H series are miniature crystal oscillator module ICs supported 20MHz to 80 MHz fundamental oscillation mode and 125°C operation. The Oscillator circuit stage has voltage regulator drive, significantly reducing current consumption and crystal drive current, compared with existing devices, and significantly reducing the oscillator characteristics supply voltage dependency. There are 3 pad layout package options available for optimized mounting, making these devices ideal for miniature crystal oscillators.

FEATURES

- Wide range of operating supply voltage: 1.60 to 3.63V
- Regulated voltage drive oscillator circuit for reduced power consumption and crystal drive current
- Optimized low crystal drive current oscillation for miniature crystal units
- 3 pad layout options for mounting 5052HAx: for Flip Chip Bonding 5052HBx: for Wire Bonding (Type I) 5052HCx: for Wire Bonding (Type II)
- Recommended oscillation frequency range (fundamental oscillator) :20 to 60MHz (Hx1~Hx5 ver.) 40 to 80MHz (HxP~HxT ver.)

• Multi-stage frequency divider for low-frequency output support: 1.25MHz (Hx1~Hx5 ver.)

2.5MHz (HxP~HxT ver.)

Frequency divider built-in

Selectable by version: $f_{OSC}, f_{OSC}/2, f_{OSC}/4, f_{OSC}/8, f_{OSC}/16$

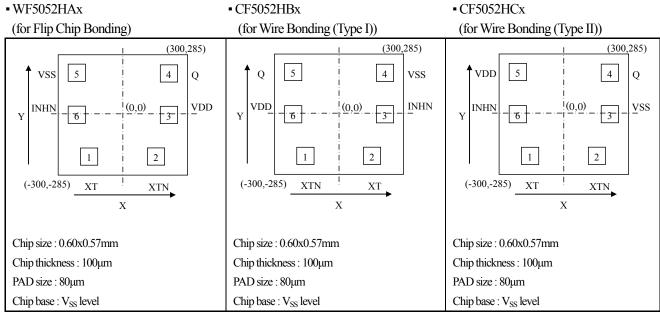
- Output drive capability: ±4mA
- -40 to 125°C operating temperature range
- Standby function
- High impedance in standby mode, oscillator stops
- CMOS output duty level ($1/2V_{DD}$)
- 50±5% output duty
- 15pF output drive capability
- Wafer form (WF5052Hxx), Chip form (CF5052Hxx)

APPLICATIONS

- 3.2 x 2.5 , 2.5 x 2.0 , 2.0 x 1.6 size miniature crystal oscillator modules

Operating supply voltage range[V]		Oscillation frequency	Output frequency and version name ^{'2}						
	PAD layout	range ^{*1} [MHz]	f _{OSC}	f _{OSC} /2	f _{OSC} /4	f _{OSC} /8	f _{osc} /16		
Flip Chi	Elin Chin Donding	20 to 60	5052HA1	5052HA2	5052HA3	5052HA4	5052HA5		
	Flip Chip Bonding	40 to 80	5052HAP	5052HAQ	5052HAR	5052HAS	5052HAT		
1.60 to 3.63	Wire Bonding	20 to 60	5052HB1	5052HB2	5052HB3	5052HB4	5052HB5		
1.00 10 5.05	Type I	40 to 80	5052HBP	-	-	-	-		
	Wire Bonding	20 to 60	5052HC1	5052HC2	5052HC3	5052HC4	5052HC5		
	Type II	40 to 80	5052HCP	-	-	-	-		

SERIES CONFIGURATION


*1. The oscillation frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillation frequency range is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

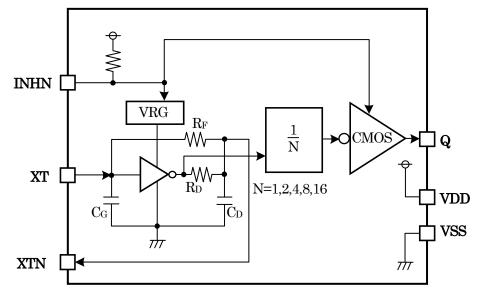
*2. It becomes WF5052Hxx in case of the wafer form and CF5052Hxx in case of the chip form.

ORDERING INFORMATION

Device	Package	Version name
WF5052Hxx-5	Wafer form	WF5052H□□−5 Torm WE : Wafer form
CF5052Hxx-5	Chip form	Form WF : Wafer form PAD layout A: for Flip Chip Bonding CF : Chip(Die) form PAD layout A: for Flip Chip Bonding (Type I) C: for Wire Bonding (Type I)

PAD LAYOUT

 \cdot Coordinates at the chip center are (0,0).


PAD COORDINATES

PAD	PAD coordinate[µm]					
No.	X -145.2 145.2 208.5 208.5 -208.5	Y				
1	-145.2	-193.5				
2	145.2	-193.5				
3	208.5	-1.1				
4	208.5	193.5				
5	-208.5	193.5				
6	-208.5	-1.1				

PIN DESCRIPTION

	PAD No.		Pin	Function
5052HAx	5052HBx	x 5052HCx		
1	2	1	XT	Crystal connection pins.
2	1	2	XTN	Crystal is connected between XT and XTN.
3	6	5	VDD	(+)supply voltage
4	5	4	Q	Output one of f_{OSC} , f_{OSC} /2, f_{OSC} /4, f_{OSC} /8, f_{OSC} /16
5	4	3	VSS	(-)ground
6	3	6	INHN	Input pin controlled output state(oscillator stops when LOW), Power-saving pull-up resistor built-in

BLOCK DIAGRAM

SPECIFICATIONS

Absolute Maximum Ratings

V_{SS}=0V

Parameter	Symbol	Condition	Rating	Unit
Supply voltage range ^{*1}	V _{DD}	Between VDD and VSS	-0.3 to +4.0	V
Input voltage range ^{*1*2}	$V_{\mathbb{I}\!N}$	Input pins	-0.3 to V _{DD} +0.3	V
Output voltage range ^{*1*2}	V _{OUT}	Output pins	-0.3 to V _{DD} +0.3	V
Output current ^{*3}	I _{OUT}	Q pin	±20	mA
Junction temperature ^{*3}	Tj		150	°C
Storage temperature range ^{*4}	T _{STG}	Chip form, Wafer form	-65 to +150	°C

*1. This parameter rating is the values that must never exceed even for a moment. This product may suffer breakdown if this parameter rating is exceeded. Operation and characteristics are guaranteed only when the product is operated at recommended operating conditions.

*2. V_{DD} is a V_{DD} value of recommended operating conditions.

*3. Do not exceed the absolute maximum ratings. If they are exceeded, a characteristic and reliability will be degraded.

*4. When stored in nitrogen or vacuum atmosphere applied to IC itself only (excluding packaging materials).

Recommended Operating Conditions

V_{SS}=0V

Parameter	Symbol	Cond		Unit				
i ai aincici	Symbol	Cond	Condition			MAX	Unit	
Oscillator frequency ^{*1}	f	V _{DD} =1.60 to 3.63V	5052Hx1 ~ Hx5 ver.	20		60	MHz	
	f_{OSC}	V _{DD} =1.00 to 3.03 V	5052HxP~HxT ver.	40		80	IVITIZ	
	f _{OUT}	V _{DD} =1.60 to 3.63V	5052Hx1 ~ Hx5 ver.	1.25		60	MHz	
Output frequency		$C_{LOUT} \leq 15 pF$	5052HxP~HxTver.	2.5		80	MITIZ	
Operating supply voltage	V _{DD}	Between VDD and VSS*	2	1.60		3.63	V	
Input voltage	V _{IN}	Input pins	Input pins			V _{DD}	V	
Operating temperature	Ta		-40		+125	°C		
Output load capacitance	CLOUT	Q output			15	pF		

*1. The oscillation frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillation frequency range is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

*2. Mount a ceramic chip capacitor that is larger than 0.01µF proximal to IC (within approximately 3mm) between VDD and VSS in order to obtain stable operation of 5052H series. In addition, the wiring pattern between IC and capacitor should be as wide as possible.

Note. Since it may influence the reliability if it is used out of range of recommended operating conditions, this product should be used within this range.

Electrical Characteristics DC Characteristics (Hx1~Hx5 version)

Parameter	Symbol	Condition	l		MIN	ТҮР	MAX	Unit
Q pin HIGH-level output voltage	V _{OH}	measurement circuit 3, I _{OH} =-4mA	L		V _{DD} -0.4		V _{DD}	V
Q pin LOW-level output voltage	V _{OL}	measurement circuit 3, I _{OL} =4mA			0		0.4	V
INHN pin HIGH-level input voltage	$V_{I\!H}$	measurement circuit 4			$0.7V_{DD}$			V
INHN pin LOW-level input voltage	$V_{I\!L}$	measurement circuit 4					0.3V _{DD}	V
Q pin	Iz	measurement circuit 5,		Q=V _{DD}			10	μA
Output leakage current	чZ	INHN="Low"		Q=V _{SS}	-10			μΑ
		5052Hx1(f _{OSC}), measurement circ	cuit 1,	V _{DD} =3.3V		1.4	2.8	
		no load, INHN="OPEN",		V _{DD} =2.5V		0.9	1.8	mA
	I _{DD}	f _{OSC} =48MHz, f _{OUT} =48MHz		V _{DD} =1.8V		0.7	1.4	
		5052Hx2(f _{OSC} /2), measurement circuit 1, no load, INHN="OPEN", f _{OSC} =48MHz, f _{OUT} =24MHz		V _{DD} =3.3V		1.2	2.4	mA
				V _{DD} =2.5V		0.8	1.6	
				V _{DD} =1.8V		0.6	1.2	
		no load, INHN="OPEN", $V_{DD}=2$		V _{DD} =3.3V		1.0	2.0	mA
Current consumption ^{*1}				V _{DD} =2.5V		0.7	1.4	
				V _{DD} =1.8V		0.5	1.0	
		5052Hx4(f _{OSC} /8), measurement c	ircuit 1.	V _{DD} =3.3V		1.0	2.0	mA
		no load, INHN="OPEN",	,	V _{DD} =2.5V		0.6	1.2	
		f _{OSC} =48MHz, f _{OUI} =6MHz		V _{DD} =1.8V		0.5	1.0	1
		5052Hx5(f _{OSC} /16),measurement of	circuit 1.	V _{DD} =3.3V		0.9	1.8	mA
		no load, INHN="OPEN",	,,	V _{DD} =2.5V		0.6	1.2	
		f _{OSC} =48MHz, f _{OUI} =3MHz		V _{DD} =1.8V		0.4	0.8	1
Store iller annuat	т	Measurement circuit 1	T _a =-40	to+85°C			10	
Standby current	I _{ST}	INHN="Low"	T _a =-40	to+125°C			20	μA
INHN pin	R _{PU1}	Measurement circuit 6			0.8	3	24	MΩ
pull-up resistance	R _{PU2}	Measurement circuit 6			30	70	150	kΩ
Oscillator feedback resistance	$R_{\rm f}$				50	100	200	kΩ
	C _G	Design value (a monitor pattern or	n a wafer	is tested),	4.0	5.0	6.0	F
Oscillator capacitance	CD	Excluding parasitic capacitance.			6.4	8.0	9.6	pF

*1. The consumption current I_{DD}(C_{LOUT}) with a load capacitance(C_{LOUT}) connected to the Q pin is given by the following equation, where I_{DD} is the no-load consumption current and f_{OUT} is the output frequency.

 $I_{DD}(C_{LOUT})[mA] = I_{DD}[mA] + C_{LOUT}[pF] \times V_{DD}[V] \times f_{OUT}[MHz] \cdot 10^{-3}$

DC Characteristics (HxP~HxT version)

Parameter	Symbol	Condition			MIN	ТҮР	MAX	Unit
Q pin HIGH-level output voltage	V _{OH}	measurement circuit 3, I _{OH} =-4mA			V _{DD} -0.4		V_{DD}	V
Q pin LOW-level output voltage	V _{OL}	measurement circuit 3, I _{OL} =4mA			0		0.4	V
INHN pin HIGH-level input voltage	V _{IH}	measurement circuit 4			0.7V _{DD}			V
INHN pin LOW-level input voltage	$V_{I\!L}$	measurement circuit 4	measurement circuit 4 measurement circuit 5, Q=V _{DD}				$0.3V_{DD}$	V
Q pin	Iz	measurement circuit 5,	neasurement circuit 5,				10	μA
Output leakage current	IZ	NHN="Low"		Q=V _{SS}	-10			μΑ
		5052HxP(f _{OSC}), measurement circu	uit 1,	V _{DD} =3.3V		2.4	4.8	
		no load, INHN="OPEN",		V _{DD} =2.5V		1.7	3.4	mA
	I _{DD}	f _{OSC} =80MHz, f _{OUT} =80MHz		V _{DD} =1.8V		1.3	2.6	
		5052HxQ(f _{OSC} /2), measurement circuit 1, no load, INHN='OPEN'', f _{OSC} =80MHz, f _{OUT} =40MHz		V _{DD} =3.3V		2.0	4.0	mA
				V _{DD} =2.5V		1.3	2.6	
				V _{DD} =1.8V		0.9	1.8	
		no load, INHN="OPEN",		V _{DD} =3.3V		1.7	3.4	mA
Current consumption ^{*1}				V _{DD} =2.5V		1.1	2.2	
				V _{DD} =1.8V		0.8	1.6	
		5052HxS(f _{OSC} /8), measurement cir	rcuit 1	V _{DD} =3.3V		1.5	3.0	mA
		no load, INHN="OPEN",	iouit 1,	V _{DD} =2.5V		0.9	1.8	
		f _{OSC} =80MHz, f _{OUT} =10MHz		V _{DD} =1.8V		0.7	1.4	1
		5052HxT(f _{OSC} /16),measurement c	ircuit 1	V _{DD} =3.3V		1.4	2.8	mA
		no load, INHN="OPEN",	noun 1,	V _{DD} =2.5V		0.9	1.8	
		f _{OSC} =80MHz, f _{OUT} =5MHz		V _{DD} =1.8V		0.7	1.4	
~ "		Measurement circuit 1	T _a =-40	to+85°C			10	
Standby current	I _{ST}	INHN="Low"	T_a=-40	to+125°C			20	μA
INHN pin	R _{PU1}	Measurement circuit 6			0.8	3	24	MΩ
pull-up resistance	R _{PU2}	Measurement circuit 6			30	70	150	kΩ
Oscillator feedback resistance	$R_{\rm f}$				50	100	200	kΩ
0 11	C _G	Design value (a monitor pattern on	a wafer	is tested),	1.6	2.0	2.4	
Oscillator capacitance	CD	Excluding parasitic capacitance.		,,	2.4	3.0	3.6	pF

 V_{DD} =1.60 to 3.63V, V_{SS} =0V, T_a = -40 to +125°C unless otherwise noted.

*1. The consumption current I_{DD}(C_{LOUT}) with a load capacitance(C_{LOUT}) connected to the Q pin is given by the following equation, where I_{DD} is the no-load consumption current and f_{OUT} is the output frequency.

 $I_{DD}(C_{LOUT})[mA] = I_{DD}[mA] + C_{LOUT}[pF] \times V_{DD}[V] \times f_{OUT}[MHz] \cdot 10^{-3}$

		$V_{DD} = 1.60$ to 3.63 V, $V_{SS} = 0$ V, $T_a = 0$	4010+	125 C unit	ess ounerwi	se noted
Parameter	Symbol	Condition	MIN	ТҮР	MAX	Unit
Q pin Output rise time	t _{r1}	Measurement circuit 1, C_{LOUT} =15pF, 0.1 $V_{DD} \rightarrow 0.9V_{DD}$, V_{DD} =2.25 to 3.63V		1.5	5.0	
	t_{r2}	Measurement circuit 1, C_{LOUI} =15pF, 0.1V _{DD} \rightarrow 0.9V _{DD} , V _{DD} =1.60 to 2.25V		2.0	6.0	ns
Q pin Output fall time	t _{fl}	t _{f1} Measurement circuit 1, C _{LOUT} =15pF, $0.9V_{DD} \rightarrow 0.1V_{DD}$, V_{DD} =2.25 to 3.63V		1.5	5.0	
	t ₁₂	Measurement circuit 1, C_{LOUI} =15pF, 0.9V _{DD} \rightarrow 0.1V _{DD} , V _{DD} =1.60 to 2.25V		2.0	6.0	ns
Q pin Output duty cycle	DUTY	Measurement circuit 1, $T_a=25^{\circ}C$, $C_{1OUI}=15pF$, $V_{DD}=1.60$ to 3.63V	45	50	55	%
Q pin Output disable delay time	t _{OD}	Measurement circuit 2, T _a =25°C, C _{LOUT} ≤15pF			200	ns

$V_{\rm DD} = 1.60$ to 3.63 V $V_{\rm CC} = 0$ V T = -40 to +125°C unless otherwise noted

AC Characteristics (HxP~HxTversion)

		$V_{DD} = 1.60$ to 3.63V, $V_{SS} = 0V$, $T_a = 0$	= -40 to $+1$	25°C unle	ess otherwi	se noted
Parameter	Symbol	Condition	MIN	ТҮР	MAX	Unit
Q pin Output rise time	t _{r1}	Measurement circuit 1, C_{LOUT} =15pF, 0.1 $V_{DD} \rightarrow 0.9V_{DD}$, V_{DD} =2.25 to 3.63V		1.0	3.5	20
	t_{r2}	t ₂ Measurement circuit 1, C_{LOUT} =15pF, 0.1 $V_{DD} \rightarrow 0.9V_{DD}$, V_{DD} =1.60 to 2.25V		1.5	5.0	ns
Q pin Output fall time	t _{fl}	t _{f1} Measurement circuit 1, C_{LOUT} =15pF, 0.9V _{DD} \rightarrow 0.1V _{DD} , V _{DD} =2.25 to 3.63V		1.0	3.5	20
	t_{t2}	Measurement circuit 1, $C_{LOUT}=15pF$, $0.9V_{DD} \rightarrow 0.1V_{DD}$, $V_{DD}=1.60$ to 2.25V		1.5	5.0	ns
Q pin Output duty cycle	DUTY	Measurement circuit 1, $T_a=25^{\circ}C$, $C_{LOUI}=15pF$, $V_{DD}=1.60$ to 3.63V	45	50	55	%
Q pin Output disable delay time	t _{OD}	Measurement circuit 2, T _a =25°C, C _{LOUT} ≤15pF			200	ns

Timing chart

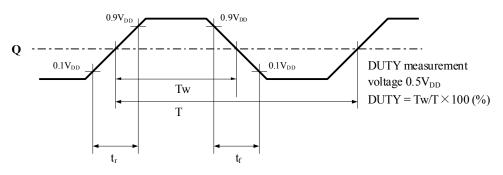
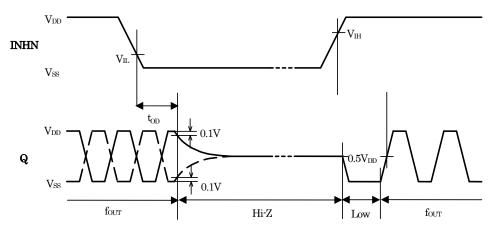



Figure 1. Output switching waveform

When INHN goes HIGH to LOW, the Q output becomes high impedance.

When INHN goes LOW to HIGH, the Q output goes LOW once and then becomes normal output operation after having detected oscillation signals.

Figure 2. Output disable and oscillation start timing chart

FUNCTIONAL DESCRIPTION INHN Function

Q output is stopped and becomes high impedance.

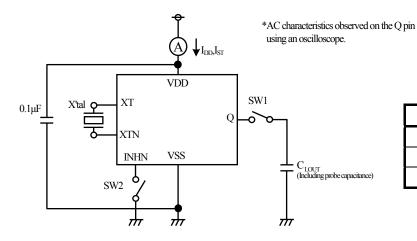
INHN	Q	Oscillator	
HIGH or Open	f_{OUT}	Operating	
LOW	Hi-Z	Stopped	

Power Saving Pull-up Resistor

The INHN pin pull-up resistance changes its value to RPU1 or RPU2 in response to the input level (HIGH or LOW).

When INHN is tied to LOW level, the pull-up resistance becomes large (R_{PU1}), thus reducing the current consumed by the resistance. When INHN is left open circuit or tied to HIGH level, the pull-up resistance becomes small (R_{PU2}), thus internal circuit of INHN becomes HIGH level.

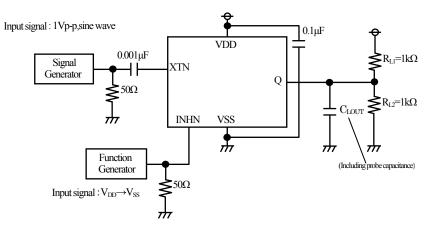
Consequently, the IC is less susceptible to the effects of noise, helping to avoid problems such as the output stopping suddenly.


Oscillation Detection Function

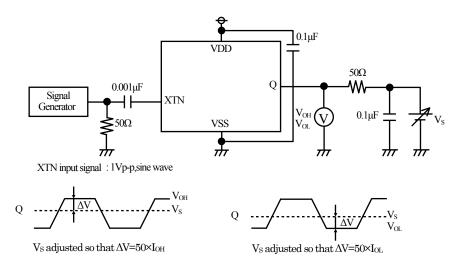
The 5052H series have an oscillation detection circuit.

The oscillation detection circuit disables the output until crystal oscillation becomes stable when oscillation circuit starts up. This function avoids the abnormal oscillation in the initial power up and in a reactivation by INHN.

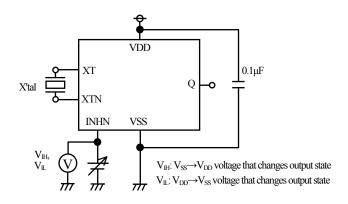
MEASUREMENT CIRCUITS MEASUREMENT CIRCUIT 1


Measurement Parameter : I_{DD} , I_{ST} , DUTY t_r , t_f

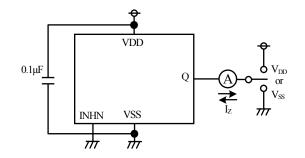
Parameter	SW1	SW2	
I _{DD}	OFF	OFF	
I _{ST}	ON or OFF	ON	
DUTY, t_r , t_f	ON	OFF	


MEASUREMENT CIRCUIT 2

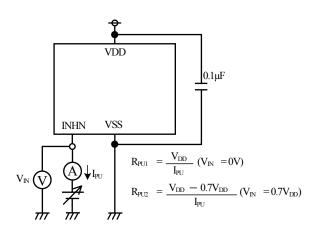
Measurement Parameter : t_{OD}


MEASUREMENT CIRCUIT 3

Measurement Parameter : V_{OH} , V_{OL}


MEASUREMENT CIRCUIT 4

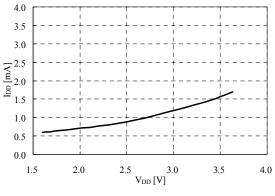
Measurement Parameter : $V_{I\!H\!}, V_{I\!L}$


MEASUREMENT CIRCUIT 5

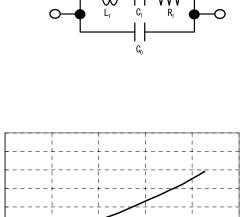
Measurement Parameter : I_Z

MEASUREMENT CIRCUIT 6

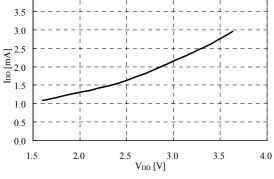
Measurement Parameter : R_{PU1}, R_{PU2}


4.0

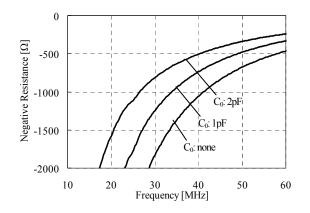
REFERENCE DATA


The following characteristics are measured using the crystal below. Note that the characteristics will vary with the crystal used.

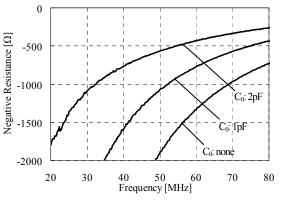
Crystal used for measurement					
Parameter	40MHz	48MHz	80MHz		
C ₀ (pF)	1.4	1.8	3.2		
$R_1(\Omega)$	8	7	13		

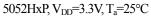

Current Consumption

5052Hx1, f_{OSC} =48MHz, T_a =25°C, no load

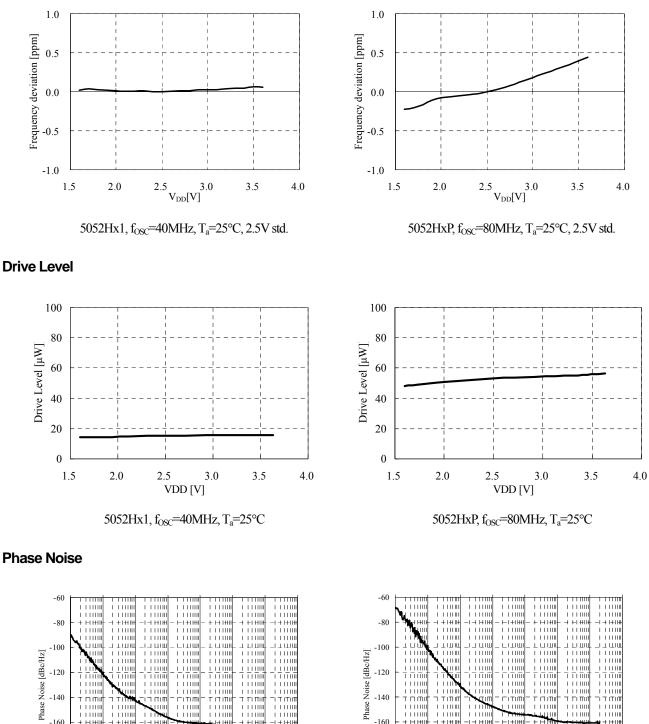


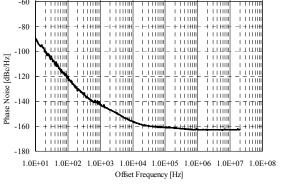
Crystal parameters

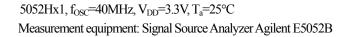



5052HxP, f_{OSC}=80MHz, T_a=25°C, no load

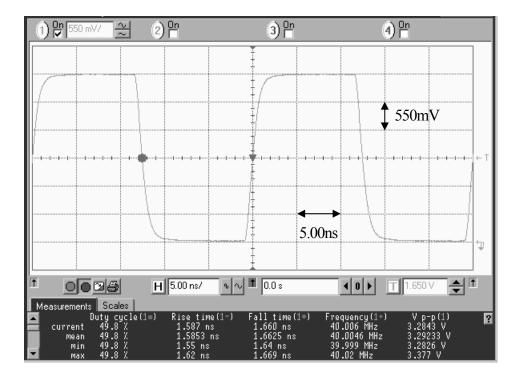
Negative Resistance


5052Hx1, V_{DD} =3.3V, T_a =25°C Measurement equipment: Agilent Impedance analyzer 4396B

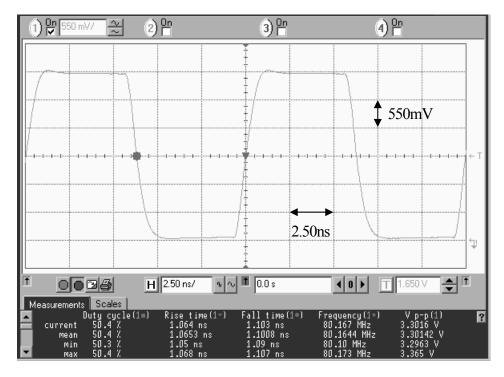

The figures show the measurement result of the crystal equivalent circuit C_0 capacitance, connected between the XT and XTN pins. They were performed with Agilent 4396B using the NPC test jig. They may vary in a measurement jig, and measurement environment.



-160 -180



5052HxP, f_{OSC}=80MHz, V_{DD}=3.3V, T_a=25°C


1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08

Offset Frequency [Hz]

Output Waveform

5052Hx1 version, V_{DD}=3.3V, f_{OUT}=40MHz, C_{LOUT}=15pF, T_a: Room temperature

5052HxP version, V_{DD} =3.3V, f_{OU1} =80MHz, C_{LOU1} =15pF, T_a : Room temperature Measurement equipment: Oscilloscope Agilent DSO80604B

Please pay your attention to the following points at time of using the products shown in this document.

1. The products shown in this document (he reinafter "Products") are de signed and manufactured to the generally accepted standards of reliability as expected for use in gene ral electronic and electric cal equipment, such as personal equipment, machine tools and measurement equipment. The Products are not designed and manufactured to be used in any o ther special equipment requiring extremely high I evel of reliability and safety, such as a erospace equipment, nu clear power control equipment, medical equipment, transportation equipment, disaster prevention equipment, security equipment. The Products are not designed and manufactured to be used for the apparatus that exerts harmful influence on the human lives due to the defects, failure or malfunction of the Products. If you wish to use the Products in that apparatus, please contact our sales section in advance.

In the event that the Products are used in such apparatus without our prior approval, we assume no responsibility whatsoever for any damages resulting from the use of that apparatus.

- 2. NPC reserves the right to change the specifications of the Products in order to improve the characteristics or reliability thereof.
- 3. The information described in this document is presented only as a guide for using the Products. No responsibility is assumed by us for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of the third parties. Then, we assume no responsibility whatsoever for any damages resulting from that infringements.
- 4. The constant of each circuit shown in this document is described as an example, and it is not guaranteed about its value of the mass production products.
- 5. In the case of that the Products in this document falls under the foreign exchange and foreign trade control law or other applicable laws and regulations, approval of the export to be based on those laws and regulations are necessary. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

2-9-4, Taito, Taito-ku, Tokyo 110-0016, Japan Telephone: +81-3-6747-5300 Facsimile: +81-3-6747-5303 http://www.npc.co.jp/ Email:sales@npc.co.jp

N D12015-E-00 20 12.07