# NPC

## **OVERVIEW**

The 5036 series are 2.5V operation, differential LV-PECL output oscillator ICs. They support 50MHz to 400MHz 3rd overtone oscillation and 50MHz to 600MHz fundamental oscillation. The devices are fabricated using a proprietary BiCMOS process, enabling a high-frequency oscillator circuit and differential LV-PECL output buffer to be incorporated on a single chip. The 5036 series can be used to construct high-frequency LV-PECL output oscillators.

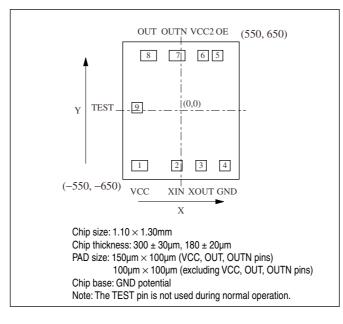
#### FEATURES

- 2.375 to 3.6V operating supply voltage range
- Recommended oscillation frequency range (varies with version)
  - 50MHz to 600MHz fundamental oscillation
  - 50MHz to 400MHz 3rd overtone oscillation
- -40 to  $85^{\circ}$ C operating temperature range
- Differential LV-PECL output

- 50 $\Omega$  output load (terminated to V<sub>CC</sub> 2V)
- Standby function
  - Outputs are high impedance when OE is LOW. (oscillator stops)
- Power-saving pull-up resistor built-in (pin OE)
- BiCMOS process
- Chip form (CF5036××, CF5036×××)

|         | Built-in C0          | Recommended C0                            | Recommended                          | Recommended                                        | Output fi      | requency          |
|---------|----------------------|-------------------------------------------|--------------------------------------|----------------------------------------------------|----------------|-------------------|
| Version | cancellation circuit | cancellation circuit value [pF] resonator |                                      | oscillation frequency<br>range <sup>*1</sup> [MHz] | f <sub>O</sub> | f <sub>O</sub> /2 |
| 5036G×  |                      |                                           |                                      | 50 to 80                                           | 5036G1         | 5036G2            |
| 5036A×  |                      |                                           | Fundamental,                         | 80 to 120                                          | 5036A1         | 5036A2            |
| 5036B×  |                      | ≥2                                        | 3rd overtone,<br>SAW                 | 100 to 180                                         | 5036B1         | 5036B2            |
| 5036C×  | 1                    |                                           |                                      | 150 to 250                                         | 5036C1         | 5036C2            |
| 5036D×  | Yes                  |                                           | Fundamental,                         | 250 to 400                                         | 5036D1         | 5036D2            |
| 5036E×  |                      | 2                                         | SAW                                  | 400 to 600                                         | 5036E1         | 5036E2            |
| 5036D1T |                      | ≥ 2.5                                     | Fundamental,<br>3rd overtone,<br>SAW | 250 to 400                                         | 5036D1T        | _                 |
| 5036G×N |                      |                                           |                                      | 50 to 100                                          | 5036G1N        | 5036G2N           |
| 5036A×N | 1                    |                                           |                                      | 80 to 120                                          | 5036A1N        | 5036A2N           |
| 5036B×N | No                   | ≤ 2.5                                     | Fundamental,<br>SAW                  | 110 to 180                                         | 5036B1N        | 5036B2N           |
| 5036C1N | 1                    |                                           | 5AW                                  | 170 to 250                                         | 5036C1N        | -                 |
| 5036D1N | 1                    |                                           |                                      | 250 to 400                                         | 5036D1N        | _                 |

SERIES CONFIGURATION

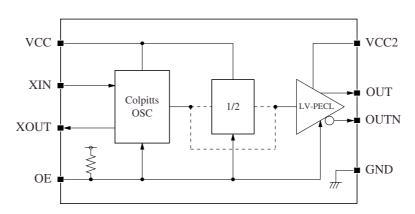

\*1. The recommended oscillation frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillator frequency band is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

## **ORDERING INFORMATION**

| Device      | Package   | Version name                                                                           |
|-------------|-----------|----------------------------------------------------------------------------------------|
| CF5036××-1  |           |                                                                                        |
| CF5036D1T-1 | Chip form | Form CF: Chip (Die) form<br>N: Not built-in CO cancellation circuit<br>T: 3rd overtone |
| CF5036××N-3 |           | Frequency divider function<br>Oscillation frequency range                              |

# PAD LAYOUT

(Unit: µm)




## **PIN DESCRIPTION and PAD DIMENSIONS**

| Ded No  | Name I/O <sup>*1</sup> |       | Function                                                                                                             | Pad dimensions [µm] |      |  |
|---------|------------------------|-------|----------------------------------------------------------------------------------------------------------------------|---------------------|------|--|
| Pad No. | Name                   | 1/0 . | Function                                                                                                             | X                   | Y    |  |
| 1       | VCC                    | _     | (+) supply pin                                                                                                       | -390                | -520 |  |
| 2       | XIN                    | I     | Oscillator input pin                                                                                                 | -39                 | -520 |  |
| 3       | XOUT                   | 0     | Oscillator output pin                                                                                                | 190                 | -520 |  |
| 4       | GND                    | -     | (–) ground pin                                                                                                       | 415                 | -520 |  |
| 5       | OE                     | I     | Output enable pin. Outputs are high impedance when LOW (oscillator stopped). Power-saving pull-up resistor built-in. | 346                 | 520  |  |
| 6       | VCC2                   | _     | (+) output buffer supply pin                                                                                         | 209                 | 520  |  |
| 7       | OUTN                   | 0     | Complementary output pin                                                                                             | -27                 | 520  |  |
| 8       | OUT                    | 0     | Output pin                                                                                                           | -306                | 520  |  |
| 9       | TEST                   | -     | IC test pin. Leave open circuit for normal operation.                                                                | -414                | 28   |  |

\*1. I: input, O: output

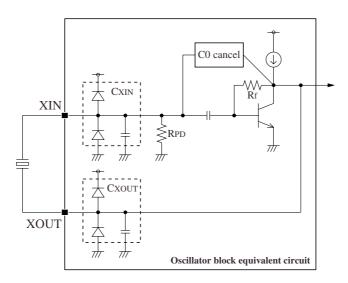
# **BLOCK DIAGRAM**



## **OSCILLATOR CIRCUIT CONSTANT**

The 5036 series oscillator setting varies with device version to optimize characteristics over the recommended oscillation frequency range.

#### 5036G×, 5036A×, 5036B×, 5036C×, 5036D×, 5036E×, 5036D1T


The 5036G×/A×/B×/C×/D1T versions are suitable for use of crystal unit with large C0 value (approximately  $C0 \ge 2.0 \text{pF} (5036\text{G}\times/\text{A}\times/\text{B}\times/\text{C}\times/\text{D}\times)/C0 \ge 2.5 \text{pF} (5036\text{D}1\text{T})$ ). The 5036E× version is suitable for use of crystal unit with C0 value of approximately 2pF.

| Version | Recommended crystal                  | Built-in capa                             | citance <sup>*1</sup> [pF] | Recommended oscillation             |
|---------|--------------------------------------|-------------------------------------------|----------------------------|-------------------------------------|
| version | unit/ resonator                      | onator C <sub>XIN</sub> C <sub>XOUT</sub> |                            | frequency range <sup>*2</sup> [MHz] |
| 5036G×  |                                      | 16                                        | 16                         | 50 to 80                            |
| 5036A×  | Fundamental,<br>3rd overtone,        | 12                                        | 12                         | 80 to 120                           |
| 5036B×  | SAW                                  | 8                                         | 8                          | 100 to 180                          |
| 5036C×  |                                      | 6                                         | 6                          | 150 to 250                          |
| 5036D×  | Fundamental,                         | 5                                         | 5                          | 250 to 400                          |
| 5036E×  | SAW                                  | 5                                         | 5                          | 400 to 600                          |
| 5036D1T | Fundamental,<br>3rd overtone,<br>SAW | 5                                         | 5                          | 250 to 400                          |

\*1. The oscillator internal capacitance values includes parasitic capacitance.

\*2. The recommended oscillation frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillator frequency band is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

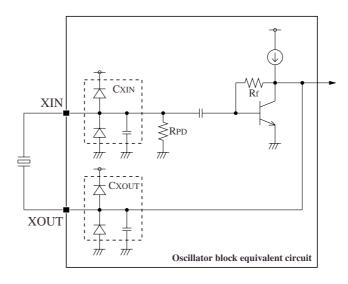
#### **Oscillator equivalent circuit**



The 5036G×/A×/B×/C×/D×(T)/E× oscillator circuit has a C0 cancel circuit built-in to improve the oscillator margin. If power is applied when there is an open circuit between XIN and XOUT, self oscillation may occur, which is not abnormal. Users should confirm that the oscillator operates normally when a crystal unit is connected.

The XOUT pin of 5036E× version emphasizes high frequency characteristics. Accordingly, its electrostatic withstand voltage is significantly lower than that of the other pins. ESD breakdown prevention handling precautions are strongly recommended.

#### 5036G×N, 5036A×N, 5036B×N, 5036C1N, 5036D1N


The 5036G×N/A×N/B×N/C1N/D1N versions are suitable for use of crystal unit with small C0 value (approximately  $C0 \le 2.5 pF$ ).

| Version | Recommended crystal | ecommended crystal Built-in capacitance <sup>*1</sup> [pF] |                   | Recommended oscillation             |
|---------|---------------------|------------------------------------------------------------|-------------------|-------------------------------------|
| version | unit/ resonator     | C <sub>XIN</sub>                                           | C <sub>XOUT</sub> | frequency range <sup>*2</sup> [MHz] |
| 5036G×N |                     | 16                                                         | 16                | 50 to 100                           |
| 5036A×N |                     | 12                                                         | 16                | 80 to 120                           |
| 5036B×N | Fundamental,<br>SAW | 11                                                         | 13                | 110 to 180                          |
| 5036C1N |                     | 10                                                         | 10                | 170 to 250                          |
| 5036D1N |                     | 8                                                          | 8                 | 250 to 400                          |

\*1. The oscillator internal capacitance values includes parasitic capacitance.

\*2. The recommended oscillation frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillator frequency band is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

#### **Oscillator equivalent circuit**



## SPECIFICATIONS

#### **Absolute Maximum Ratings**

| Parameter                            | Symbol           | Conditions          | Rating                             | Unit |
|--------------------------------------|------------------|---------------------|------------------------------------|------|
| Supply voltage range <sup>*1</sup>   | V <sub>CC</sub>  | VCC, VCC2 pins      | -0.5 to +5.0                       | V    |
| Input voltage range <sup>*1 *2</sup> | V <sub>IN</sub>  | XIN, OE pins        | GND – 0.5 to V <sub>CC</sub> + 0.5 | V    |
| Output voltage range*1 *2            | V <sub>OUT</sub> | XOUT, OUT/OUTN pins | GND – 0.5 to V <sub>CC</sub> + 0.5 | V    |
| Storage temperature range*3          | T <sub>STG</sub> | Chip form           | -65 to +150                        | °C   |

\*1. This parameter rating is the values that must never exceed even for a moment. This product may suffer breakdown if this parameter rating is exceeded. Operation and characteristics are guaranteed only when the product is operated at recommended operating conditions.

\*2.  $V_{CC}$  is a  $V_{CC}$  value of recommended operating conditions.

\*3. When stored in nitrogen or vacuum atmosphere applied to IC itself only (excluding packaging materials).

#### **Recommended Operating Conditions**

| Parameter                           | Symbol           | Conditions                                   |       | Unit |                 |      |
|-------------------------------------|------------------|----------------------------------------------|-------|------|-----------------|------|
| Falameter                           | Symbol           | Conditions                                   | Min   | Тур  | Max             | Unit |
| Operating supply voltage            | V <sub>CC</sub>  | VCC, VCC2 pins                               | 2.375 | -    | 3.6             | V    |
| Operating supply voltage difference | $\Delta V_{CC}$  | Voltage difference between VCC and VCC2 pins | -0.1  | -    | +0.1            | V    |
| Input voltage                       | V <sub>IN</sub>  | XIN, OE pins                                 | GND   | -    | V <sub>CC</sub> | V    |
| Operating temperature               | T <sub>OPR</sub> |                                              | -40   | +25  | +85             | °C   |
| Output load                         | RL               | Terminated to V <sub>CC</sub> – 2V           | 49.5  | 50   | 50.5            | Ω    |
| Output frequency*1                  | fouт             |                                              | 25    | -    | 600             | MHz  |

\*1. Output frequency varies by version. Refer to "SERIES CONFIGURATION".

Note. Since it may influence the reliability if it is used out of range of recommended operating conditions, this product should be used within this range.

## **Electrical Characteristics**

## 3.3V operation

 $V_{CC}$  = 3.0 to 3.6V, GND = 0V, Ta = -40 to +85°C unless otherwise noted.

| Parameter                 | Cumhol           | Cor                                                  | ditions                                  |                    | Rating |                    | Unit |
|---------------------------|------------------|------------------------------------------------------|------------------------------------------|--------------------|--------|--------------------|------|
| Parameter                 | Symbol           | Con                                                  | Conditions                               |                    | Тур    | Max                | Unit |
| Current consumption       | Icc              | Measurement cct. 1,                                  | 5036G×(N), A×(N), B×(N),<br>C×(N), D×(×) | -                  | 55     | 88                 | mA   |
|                           |                  | OE = open                                            | 5036E×                                   | -                  | 64     | 98                 | mA   |
| Standby current           | I <sub>STB</sub> | Measurement cct. 1, OE =                             | LOW                                      | -                  | -      | 30                 | μA   |
|                           | V                | Measurement cct. 2.                                  | Ta = 0 to 85°C                           | 2.275              | 2.350  | 2.420              | V    |
| HIGH-level output voltage | V <sub>OH</sub>  | $V_{CC} = 3.3V, OE = open,$                          | Ta = $-40^{\circ}$ C to $0^{\circ}$ C    | 2.215              | 2.295  | 2.420              | V    |
|                           | N                | TEST = LOW,<br>XIN = HIGH or LOW,                    | Ta = 0 to 85°C                           | 1.490              | 1.600  | 1.680              | V    |
| LOW-level output voltage  | V <sub>OL</sub>  | OUT/OUTN pins                                        | Ta = $-40^{\circ}$ C to $0^{\circ}$ C    | 1.470              | 1.605  | 1.745              | V    |
| Output leakage current    | Ιz               | Measurement cct. 3, SW2<br>OUT/OUTN pins             | = HIGH or LOW, OE = LOW,                 | -                  | -      | 10                 | μA   |
| HIGH-level input voltage  | V <sub>IH</sub>  | Measurement cct. 1, OE pi                            | n                                        | 0.7V <sub>CC</sub> | _      | _                  | V    |
| LOW-level input voltage   | V <sub>IL</sub>  | Measurement cct. 1, OE pi                            | Measurement cct. 1, OE pin               |                    | -      | 0.3V <sub>CC</sub> | V    |
| HIGH-level input current  | I <sub>IH</sub>  | Measurement cct. 1, $V_{IN}$ = 0.7 $V_{CC}$ , OE pin |                                          | -20                | -      | -200               | μA   |
| LOW-level input current   | Ι <sub>IL</sub>  | Measurement cct. 1, V <sub>IN</sub> = 0V, OE pin     |                                          | -2                 | -      | -20                | μA   |
| Pull-down resistance      | R <sub>PD</sub>  | Measurement cct. 3, SW1                              | = ON, XIN pin                            | 12                 | 24     | 48                 | kΩ   |

#### 2.5V operation

 $V_{CC}$  = 2.375 to 2.625V, GND = 0V, Ta = -40 to +85°C unless otherwise noted.

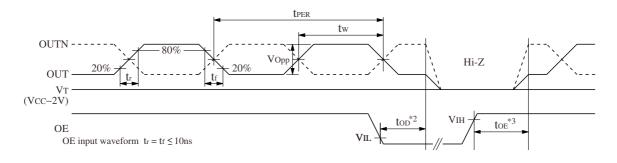
| Parameter                 | Symbol           | Con                                                  | Conditions                               |                    | Rating |                    | Unit |
|---------------------------|------------------|------------------------------------------------------|------------------------------------------|--------------------|--------|--------------------|------|
| Parameter                 | Symbol           | Conditions                                           |                                          | Min                | Тур    | Max                | Unit |
| Current consumption       | Icc              | Measurement cct. 1,                                  | 5036G×(N), A×(N), B×(N),<br>C×(N), D×(×) | -                  | 55     | 88                 | mA   |
|                           |                  | OE = open                                            | 5036E×                                   | -                  | 64     | 98                 | mA   |
| Standby current           | I <sub>STB</sub> | Measurement cct. 1, OE =                             | LOW                                      | -                  | -      | 30                 | μA   |
|                           | N                | Measurement cct. 2.                                  | Ta = 0 to 85°C                           | 1.475              | 1.550  | 1.760              | V    |
| HIGH-level output voltage | V <sub>OH</sub>  | $V_{CC} = 2.5V, OE = open,$                          | Ta = $-40^{\circ}$ C to $0^{\circ}$ C    | 1.415              | 1.495  | 1.620              | V    |
|                           | N                | TEST = LOW,<br>XIN = HIGH or LOW,                    | Ta = 0 to 85°C                           | 0.690              | 0.800  | 1.095              | V    |
| LOW-level output voltage  | V <sub>OL</sub>  | OUT/OUTN pins                                        | Ta = $-40^{\circ}$ C to $0^{\circ}$ C    | 0.670              | 0.805  | 1.195              | V    |
| Output leakage current    | Ι <sub>Ζ</sub>   | Measurement cct. 3, SW2 = OUT/OUTN pins              | = HIGH or LOW, OE = LOW,                 | -                  | _      | 10                 | μA   |
| HIGH-level input voltage  | V <sub>IH</sub>  | Measurement cct. 1, OE pi                            | n                                        | 0.7V <sub>CC</sub> | -      | -                  | V    |
| LOW-level input voltage   | V <sub>IL</sub>  | Measurement cct. 1, OE pi                            | Measurement cct. 1, OE pin               |                    | -      | 0.3V <sub>CC</sub> | V    |
| HIGH-level input current  | I <sub>IH</sub>  | Measurement cct. 1, $V_{IN}$ = 0.7 $V_{CC}$ , OE pin |                                          | -10                | -      | -150               | μA   |
| LOW-level input current   | Ι <sub>ΙL</sub>  | Measurement cct. 1, V <sub>IN</sub> = 0V, OE pin     |                                          | -2                 | -      | -20                | μA   |
| Pull-down resistance      | R <sub>PD</sub>  | Measurement cct. 3, SW1                              | = ON, XIN pin                            | 12                 | 24     | 48                 | kΩ   |

# **Switching Characteristics**

# 3.3V operation

 $V_{CC}$  = 3.0 to 3.6V, GND = 0V, Ta = -40 to +85°C unless otherwise noted.

| Parameter                  | Symbol           | Conditio                                       |                                             |            |     | Rating |     | Unit |
|----------------------------|------------------|------------------------------------------------|---------------------------------------------|------------|-----|--------|-----|------|
| Farameter                  | Symbol           | Condition                                      | Conditions                                  |            |     |        | Max | Unit |
|                            |                  | Measurement cct. 4, measured                   | 5036××,                                     | f < 350MHz | 45  | -      | 55  | %    |
| Output duty cycle 1        | Duty1            | at output crossing point,                      | 5036D1T                                     | f ≥ 350MHz | 40  | -      | 60  | %    |
|                            |                  | Ta = $25^{\circ}$ C, V <sub>CC</sub> = $3.3$ V | 5036××N                                     |            | 40  | -      | 60  | %    |
|                            |                  |                                                | 5036××                                      | f < 250MHz | 45  | -      | 55  | %    |
|                            |                  | Measurement cct. 4,                            | 5030××                                      | f≥250MHz   | 40  | -      | 60  | %    |
| Output duty cycle 2        | Duty2            | measured at 50% output swing,                  | 5000D1T                                     | f < 350MHz | 45  | -      | 55  | %    |
|                            |                  | Ta = 25°C, V <sub>CC</sub> = 3.3V              | 5036D1T                                     | f ≥ 350MHz | 40  | -      | 60  | %    |
|                            |                  |                                                | 5036××N                                     |            | 40  | -      | 60  | %    |
|                            |                  |                                                | 5036G×(N): f = 80MHz                        |            | 0.4 | -      | -   | V    |
|                            |                  |                                                | 5036A×(N):                                  | f = 120MHz | 0.4 | -      | _   | V    |
| O to to 1 o 1 o 1          |                  | Measurement cct. 4,<br>Ta = $T_{OPB}$ ,        | 5036B×(N):                                  | f = 180MHz | 0.4 | -      | _   | V    |
| Output swing <sup>*1</sup> | V <sub>Opp</sub> | Peak to peak of single output waveform         | 5036C×(N):                                  | f = 250MHz | 0.4 | -      | _   | V    |
|                            |                  |                                                | 5036D×(×): f = 400MHz<br>5036E×: f = 600MHz |            | 0.4 | -      | -   | V    |
|                            |                  |                                                |                                             |            | 0.4 | -      | -   | V    |
| Output rise time           | t <sub>r</sub>   | Measurement cct. 4, 20 to 80% output swing     |                                             |            | -   | 0.3    | 0.7 | ns   |
| Output fall time           | t <sub>f</sub>   | Measurement cct. 4, 80 to 20% o                | output swing                                |            | -   | 0.3    | 0.7 | ns   |
| Output enable time         | t <sub>OE</sub>  | Measurement cct. 1, Ta = 25°C                  |                                             |            | -   | -      | 2   | ms   |
| Output disable time        | t <sub>OD</sub>  | Measurement cct. 1, Ta = 25°C                  |                                             |            | -   | -      | 200 | ns   |


\*1. The said values are measured by using the NPC standard jig.

#### 2.5V operation

 $V_{CC}$  = 2.375 to 2.625V, GND = 0V, Ta = -40 to +85°C unless otherwise noted.

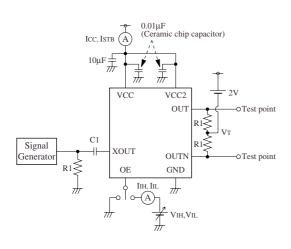
| Devenuetev                 | Cumhal           | Conditio                                            |                               |                 |     | Rating |     | Unit |
|----------------------------|------------------|-----------------------------------------------------|-------------------------------|-----------------|-----|--------|-----|------|
| Parameter                  | Symbol           | Conditio                                            | ons                           |                 | Min | Тур    | Max | Unit |
|                            |                  | Measurement cct. 4, measured                        | 5036××,                       | f < 350MHz      | 45  | -      | 55  | %    |
| Output duty cycle 1        | Duty1            | at output crossing point,                           | 5036D1T                       | f ≥ 350MHz      | 40  | -      | 60  | %    |
|                            |                  | Ta = 25°C, V <sub>CC</sub> = 2.5V                   | 5036××N                       |                 | 40  | -      | 60  | %    |
|                            |                  | Measurement cct. 4.                                 | 5036××                        | f < 250MHz      | 45  | -      | 55  | %    |
| Output duty cycle 2        | Duty2            | measured at 50% output swing,                       | 5030××                        | $f \ge 250 MHz$ | 40  | -      | 60  | %    |
|                            |                  | Fa = 25°C, V <sub>CC</sub> = 2.5V<br>5036D1T, 5036× | )36××N                        | 40              | -   | 60     | %   |      |
|                            |                  | 5036G×(N): f = 80M                                  |                               | f = 80MHz       | 0.2 | -      | _   | V    |
|                            |                  |                                                     | 5036A×(N): f = 120MHz         |                 | 0.2 | -      | -   | V    |
| Outrust autim a*1          | N                | Measurement cct. 4,<br>Ta = $T_{OPB}$ ,             | 5036B×(N):                    | f = 180MHz      | 0.2 | -      | _   | V    |
| Output swing <sup>*1</sup> | V <sub>Opp</sub> | Peak to peak of single output waveform              | 5036C×(N):                    | f = 250MHz      | 0.2 | -      | _   | V    |
|                            |                  |                                                     | 5036D×(×):                    | f = 400MHz      | 0.2 | -      | -   | V    |
|                            |                  |                                                     | 5036E×: f = 600MHz            |                 | 0.2 | -      | _   | V    |
| Output rise time           | t <sub>r</sub>   | Measurement cct. 4, 20 to 80% output swing          |                               |                 | -   | 0.3    | 0.7 | ns   |
| Output fall time           | t <sub>f</sub>   | Measurement cct. 4, 80 to 20% of                    | 80 to 20% output swing        |                 | -   | 0.3    | 0.7 | ns   |
| Output enable time         | t <sub>OE</sub>  | Measurement cct. 1, Ta = 25°C                       | Measurement cct. 1, Ta = 25°C |                 | -   | -      | 2   | ms   |
| Output disable time        | t <sub>OD</sub>  | Measurement cct. 1, Ta = 25°C                       |                               |                 | -   | _      | 200 | ns   |

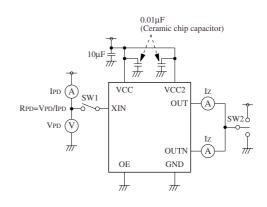
 $^{\ast}\ensuremath{\text{1}}.$  The said values are measured by using the NPC standard jig.



$$\begin{array}{l} DUTY1 = t_W \! / \! t_{PER} \times 100 \; (\%) @ \mbox{ crossing point} \\ DUTY2 = t_W \! / \! t_{PER} \times 100 \; (\%) @ \mbox{ 50\% waveform} \end{array}$$

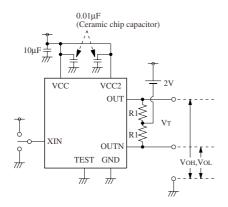
\*2. The OUT/OUTN output goes high impedance after the OE is fallen and then the output disable time "t<sub>OD</sub>" has elapsed. The output signal is pulled down to V<sub>T</sub> (terminated voltage) by load resistance.
\*3. The normal output occurs after the OE is raised and then the output enable time "t<sub>OE</sub>" has elapsed.


Timing chart


#### **MEASUREMENT CIRCUITS**

 Note: Bypass capacitors specified in each measurement circuit below should be connected between VCC and GND, and VCC2 and GND. Load resistance specified in each measurement circuit below should be connected to OUT and OUTN pins (excluding measurement circuit 3).

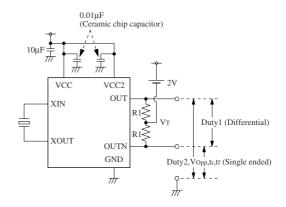
Circuit wiring of bypass capacitors and load resistance should be connected as short as possible. If the circuit wiring is long, the required characteristics may not be realized. Also, if the values of bypass capacitors and load resistance differ from the description in this document or are not connected, the required characteristics may not be realized.


#### **Measurement Circuit 1**





C1: 0.01μF R1: 49.9Ω


#### **Measurement Circuit 2**



 $\begin{array}{l} \text{R1:} 49.9\Omega \\ \text{XIN} = \text{HIGH:} \ \text{OUT} = \text{HIGH}, \ \text{OUTN} = \text{LOW} \\ \text{XIN} = \text{LOW} : \ \text{OUT} = \text{LOW}, \ \text{OUTN} = \text{HIGH} \\ \end{array}$ 

#### **Measurement Circuit 4**

**Measurement Circuit 3** 



 $\text{R1:}\,49.9\Omega$ 

## FUNCTIONAL DESCRIPTION

## **Standby Function**

When OE goes LOW, the oscillator stops and the output pins (OUT, OUTN) become high impedance.

| OE             | OUT, OUTN                                                   | Oscillator |
|----------------|-------------------------------------------------------------|------------|
| HIGH (or open) | HIGH (or open) Either f <sub>O</sub> or f <sub>O</sub> /2 N |            |
| LOW            | High impedance                                              | Stopped    |

#### **Power-saving Pull-up Resistor**

The OE pin pull-up resistance changes in response to the input level (HIGH or LOW). When OE is tied LOW (standby state), the pull-up resistance becomes large, reducing the current consumed by the resistance. When OE is open circuit, the pull-up resistance becomes small, decreasing the susceptibility to the effects of external noise.

#### **Oscillation Detector Function**

The 5036 series also feature an oscillation detector circuit. This circuit functions to disable the outputs until the oscillator circuit starts and oscillation becomes stable. This alleviates the danger of abnormal oscillator output at oscillator start-up when power is applied or when OE is switched.

Please pay your attention to the following points at time of using the products shown in this document.

1. The products shown in this document (hereinafter "Products") are designed and manufactured to the generally accepted standards of reliability as expected for use in general electronic and electrical equipment, such as personal equipment, machine tools and measurement equipment. The Products are not designed and manufactured to be used in any other special equipment requiring extremely high level of reliability and safety, such as aerospace equipment, nuclear power control equipment, medical equipment, transportation equipment, disaster prevention equipment, security equipment. The Products are not designed and manufactured to be used for the apparatus that exerts harmful influence on the human lives due to the defects, failure or malfunction of the Products. If you wish to use the Products in that apparatus, please contact our sales section in advance.

In the event that the Products are used in such apparatus without our prior approval, we assume no responsibility whatsoever for any damages resulting from the use of that apparatus.

- 2. NPC reserves the right to change the specifications of the Products in order to improve the characteristics or reliability thereof.
- 3. The information described in this document is presented only as a guide for using the Products. No responsibility is assumed by us for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of the third parties. Then, we assume no responsibility whatsoever for any damages resulting from that infringements.
- 4. The constant of each circuit shown in this document is described as an example, and it is not guaranteed about its value of the massproduction products.
- 5. In the case of that the Products in this document falls under the foreign exchange and foreign trade control law or other applicable laws and regulations, approval of the export to be based on those laws and regulations are necessary. Customers are requested appropriately take steps to obtain required permissions or approvals form appropriate government agencies.



NC0308HE 2010.11