NPC Divide-by-512 Free

Divide-by-512 Frequency Output, Crystal Oscillator Module IC

OVERVIEW

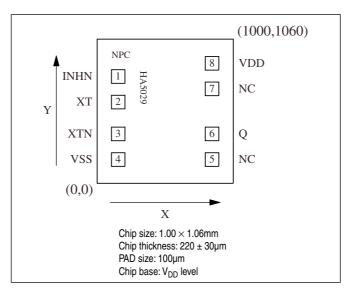
The CF5029A is crystal oscillator module IC with divide-by-512 frequency output. It employs a 16.777216MHz fundamental frequency crystal source oscillator to generate a 32.768kHz output crystal oscillator with excellent temperature characteristics.

FEATURES

- 2.25 to 3.6V operating supply voltage range
- 16.777216MHz reference source oscillator frequency
- Output frequency: oscillation frequency divided by 512
- -40 to 85°C operating temperature range
- Oscillation capacitors C_G, C_D built-in

APPLICATIONS

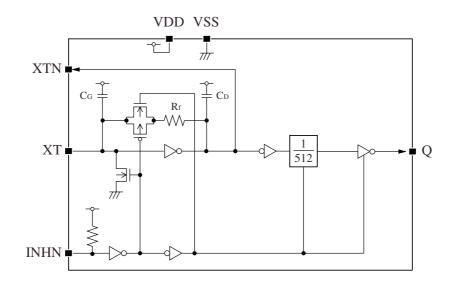
■ 32.768kHz output crystal oscillator modules


ORDERING INFORMATION

Device	Package
CF5029A-2	Chip form

- Standby function
- High impedance in standby mode, oscillator stops
- Power-saving pull-up resistor built-in
- 2mA output drive capability (min. $V_{DD} = 2.25V$)
- CMOS output duty level (1/2VDD)
- Molybdenum-gate CMOS process
- Chip form (CF5029A)

PAD LAYOUT

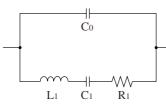

(Unit: µm)

PIN DESCRIPTION and PAD DIMENSIONS

No.	Name	I/O	Description		Pad dimensions	
NO.	Name	1/0			X	Y
1	INHN	I	Output state control input. High impedance when LOW, oscillator stops. Power-saving pull-up resistor built-in.		155	785
2	ХТ	I	Oscillator input	Crystal connection pins.	155	597
3	XTN	0	Oscillator output	Crystal is connected between XT and XTN.	155	363
4	VSS	-	(–) ground		155	175
5	NC	-	No connection (leave open)		844	175
6	Q	0	Output. Source osci	844	363	
7	NC	-	No connection (leave open)		844	694
8	VDD	-	(+) supply voltage		844	882

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS


Parameter	Symbol	Condition	Rating	Unit
Supply voltage range	V _{DD}		$\rm V_{SS}$ –0.3 to $\rm V_{SS}$ + 5.0	V
Input voltage range	V _{IN}		$V_{SS}{-}0.3$ to $V_{DD}{+}0.3$	V
Output voltage range	V _{OUT}		$V_{SS}{-}0.3$ to $V_{DD}{+}0.3$	V
Storage temperature range	T _{STG}	Chip form	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

 $f_{O} = 16.777216$ MHz unless otherwise noted.

Parameter	Symbol	Symbol Condition		Unit		
Falallete	Symbol		min	typ	max	Unit
Supply voltage	V _{DD}		2.25	-	3.6	V
Input voltage	V _{IN}		V _{SS}	-	V _{DD}	V
Operating temperature	T _{OPR}		-40	+25	+85	°C

Current consumption and Output waveform with NPC's standard crystal

R 1 [Ω]	L1 [mH]	C1 [fF]	C0 [pF]
5.6	7.45	12.67	3.40

ELECTRICAL CHARACTERISTICS

DC Characteristics

 V_{DD} = 2.25 to 3.6V, V_{SS} = 0V, Ta = -40 to +85°C unless otherwise noted.

Parameter	Symbol	Condition			Rating		Unit
Farameter	Symbol			min	typ	max	Unit
Operating current		Measurement cct 1,	V _{DD} = 2.25 to 2.75V	-	0.24	0.6	mA
consumption	I _{DD}	INHN = open or HIGH, C _L = 15pF	V _{DD} = 2.75 to 3.6V	-	0.42	1	mA
Standby current	I _{ST}	Measurement cct 1, INHN = LOW		-	-	10	μA
HIGH-level output voltage	V _{OH}	Measurement cct 3, V_{DD} = 2.25 to 3.6V, I_{OH} = 2mA		V _{DD} - 0.4	V _{DD} – 0.15	-	V
LOW-level output voltage	V _{OL}	Measurement cct 3, V_{DD} = 2.25 to 3.6V, I_{OL} = 2mA		-	0.15	0.4	V
		Iz Measurement cct 4, INHN = LOW	V _{OH} = V _{DD}	-	-	10	μA
Output leakage current	I Z		V _{OL} = V _{SS}	-	-	-10	μA
HIGH-level input voltage	V _{IH}	Measurement cct 5		0.7V _{DD}	-	-	V
LOW-level input voltage	V _{IL}	Measurement cct 5		-	-	0.3V _{DD}	V
	R _{PU1}	Measurement cct 6	INHN = V _{SS}	0.4	-	4	MΩ
INHN pull-up resistance	R _{PU2}		INHN = 0.7V _{DD}	40	-	200	kΩ
Built in consoitance	C _G	Design value. A monitor pattern on a wafer is tested.		5	6	7	pF
Built-in capacitance	CD	Ta = 25°C		5	6	7	pF

AC Characteristics

 V_{DD} = 2.25 to 3.6V, V_{SS} = 0V, Ta = -40 to +85°C unless otherwise noted.

Parameter	Symbol	Condition		Rating		
Falameter	Symbol	Condition	min	typ	max	Unit
Output duty cycle	Duty	Measurement cct 1, C _L = 15pF, V _{DD} = 2.5V, 3.3V, Ta = 25°C	45	50	55	%
Rise time	t _r	Measurement cct 1, 0.1V _{DD} to 0.9V _{DD} , $C_L = 15pF$	-	0.2	1	μs
Fall time	t _f	Measurement cct 1, 0.9V _{DD} to $0.1V_{DD}$, C _L = 15pF	-	0.2	1	μs
Output enable delay time ¹	t _{OE}	Measurement cct 2, V_{DD} = 2.5V, 3.3V, Ta = 25°C	-	-	2	μs
Output disable delay time	t _{OD}	Measurement cct 2, V_{DD} = 2.5V, 3.3V, Ta = 25°C	-	-	2	μs

1. Oscillator stop function is built-in. When INHN goes LOW, normal output stops. When INHN goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

Timing chart

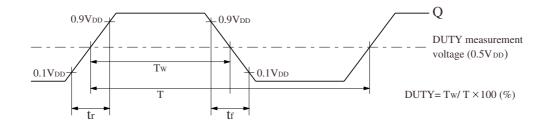


Figure 1. Output switching waveform

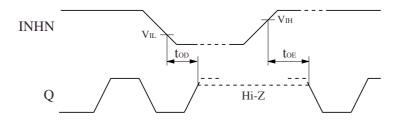


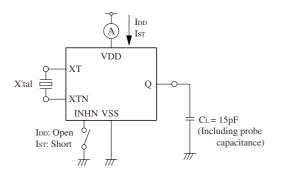
Figure 2. Output disable/enable timing chart

FUNCTIONAL DESCRIPTION

Standby Function

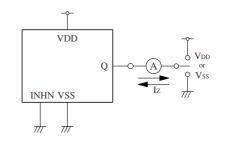
When INHN goes LOW, the device is in standby mode. The Q output becomes high impedance and the oscillator circuit stops.

INHN	Q	Oscillator
HIGH (or open)	f _O /512	Normal operation
LOW	High impedance	Stopped

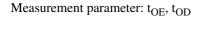

Power-saving Pull-up Resistor

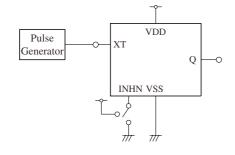
The INHN pin pull-up resistance changes in response to the input level (HIGH or LOW). When INHN is tied LOW, the pull-up resistance becomes large, reducing the current consumed by the resistance. When INHN is open circuit, the pull-up resistance becomes small, decreasing the susceptibility to the effects of external noise.

MEASUREMENT CIRCUITS


Measurement cct 1

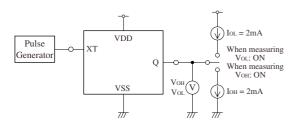
Measurement parameter: I_{DD} , I_{ST} , Duty, t_r , t_f




Measurement parameter: I_Z

Note: The AC characteristics are observed with an oscilloscope on pin Q. X'tal: NPC's standard crystal

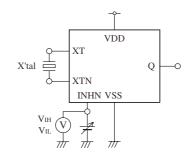
Measurement cct 2



< 16MHz

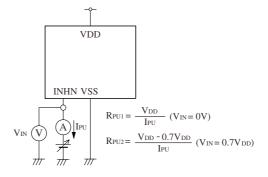
HIGH-level: V_{DD} , LOW-level: V_{SS} Note: Observed with an oscilloscope on pin Q. Does not include the oscillator start time.

Measurement cct 3


Measurement parameter: VOH, VOL

< 16MHz HIGH-level: V_{DD} , LOW-level: V_{SS} Note: Q HIGH-level and LOW-level voltages V_{OH} and V_{OL} are measured with pulse input stopped.

Measurement cct 5


Measurement parameter: VIH, VIL

 $\label{eq:VI} \begin{array}{l} V_{IH}: \mbox{Voltage in } V_{SS} \mbox{ to } V_{DD} \mbox{ transition that changes the output state.} \\ V_{IL}: \mbox{Voltage in } V_{DD} \mbox{ to } V_{SS} \mbox{ transition that changes the output state.} \\ \mbox{INHN is an output state control pin.} \\ \mbox{Note: } X' \mbox{tal: NPC's standard crystal} \end{array}$

Measurement cct 6

Measurement parameter: R_{PU1}, R_{PU2}

Please pay your attention to the following points at time of using the products shown in this document.

NPC

The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from SEIKO NPC CORPORATION (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

1-9-9, Hatchobori, Chuo-ku, Tokyo 104-0032, Japan Telephone: +81-3-5541-6501 Facsimile: +81-3-5541-6510 http://www.npc.co.jp/ Email: sales@npc.co.jp

NC0313BE 2006.04