NPC

OVERVIEW

The 5026 series are miniature crystal oscillator module ICs. They feature a damping resistor R_D matched to the crystal's characteristics to reduce crystal current. They support fundamental oscillation and 3rd overtone oscillation modes. The 5026 series can be used to correspond to wide range of applications.

FEATURES

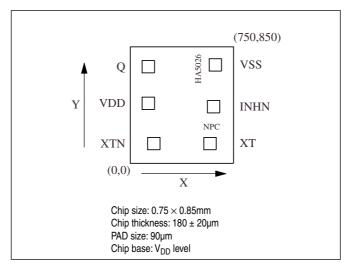
- Miniature-crystal matched oscillator characteristics
- Operating supply voltage range
 - 2.5V operation: 2.25 to 2.75V
 - 3.0V operation: 2.7 to 3.6V
- Recommended operating frequency range
 - For fundamental oscillator
 - 5026AL×: 20MHz to 50MHz
 - 5026BL1: 20MHz to 100MHz
 - For 3rd overtone oscillator
 5026ML×: 70MHz to 133MHz
- -40 to 85°C operating temperature range
- Oscillator capacitor with excellent frequency characteristics built-in
- Oscillator circuit with damping resistor R_D builtin for reduced crystal current

- Standby function
- High impedance in standby mode, oscillator stops
- Low standby current
- Power-saving pull-up resistor built-in
- Oscillation detector function
- Frequency divider built-in (5026AL×)
- Varies with version: f_0 , $f_0/2$, $f_0/4$, $f_0/8$, $f_0/16$, $f_0/32$
- CMOS output duty level (1/2VDD)
- $50 \pm 5\%$ output duty @ 1/2VDD
- 30pF output load
- Molybdenum-gate CMOS process
- Chip form (CF5026×L×)

	Oneveting		Recommended	Output			Standb	y mode
Version	Operating supply voltage range [V]	Oscillation mode	operating frequency range (fundamental oscillation) ^{*1} [MHz]	current (V _{DD} = 2.5V) [mA]	Output frequency	Output duty level	Oscillator stop function	Output state
CF5026AL1					f _O			
CF5026AL2					f _O /2		Yes	
CF5026AL3	2.25 to 3.6	to 3.6 Fundamental 20 to 50	20 to 50	4	f _O /4	CMOS		Hi-Z
CF5026AL4	2.25 10 3.0	Fundamentai	2010 50	4	f _O /8			
CF5026AL5					f _O /16			
CF5026AL6					f _O /32			
CF5026BL1*2	2.25 to 3.6	Fundamental	20 to 100	8	f _O	CMOS	Yes	Hi-Z
CF5026MLA		70 to 80						
CF5026MLB	2.25 to 3.6	3rd overtone	80 to 100	8	f _O	CMOS	Yes	Hi-Z
CF5026MLC			90 to 133					

SERIES CONFIGURATION

*1. The recommended operating frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillator frequency band is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

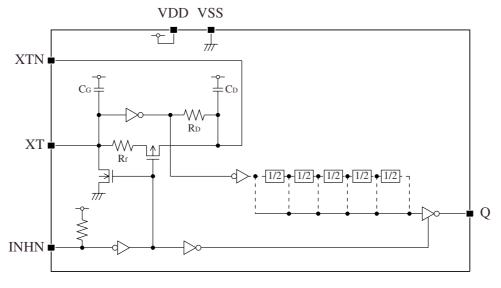

*2. The CF5026BL1 has a higher maximum operating frequency, hence the negative resistance is also larger than in the CF5026AL× devices.

ORDERING INFORMATION

Device	Package
CF5026×L×-3	Chip form

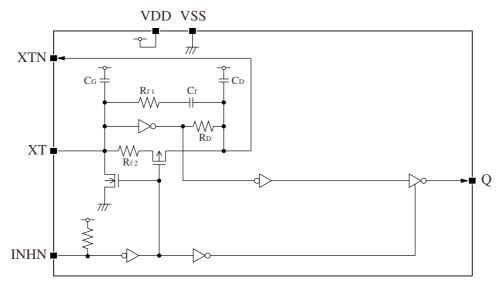
PAD LAYOUT

(Unit: µm)



PIN DESCRIPTION and PAD DIMENSIONS

Nama	Name VO Description		Description	Pad dimen	sions [µm]
Name	1/0		Description	Х	Y
INHN	I	Output state control input. Power-saving pull-up resis	High impedance when LOW (oscillator stops). tor built-in.	605	413
XT	I	Amplifier input	Crystal connection pins.	579	144
XTN	0	Amplifier output	Crystal is connected between XT and XTN.	171	144
VDD	-	Supply voltage		131	438
Q	0	Output. Output frequency of f _O /32. High impedance in s	determined by internal circuit to one of $\rm f_{O},\rm f_{O}/2,\rm f_{O}/4,\rm f_{O}/8,\rm f_{O}/16,$ standby mode	131	705
VSS	-	Ground		618	718


BLOCK DIAGRAM

For Fundamental Oscillator (5026AL×, 5026BL1)

INHN = LOW active

For 3rd Overtone Oscillator (5026ML×)

INHN = LOW active

SPECIFICATIONS

Absolute Maximum Ratings

 $V_{SS} = 0V$

Parameter	Symbol	Condition	Rating	Unit
Supply voltage range	V _{DD}		-0.5 to +7.0	V
Input voltage range	V _{IN}		–0.5 to V _{DD} + 0.5	V
Output voltage range	V _{OUT}		-0.5 to V _{DD} + 0.5	V
Operating temperature range	T _{opr}		-40 to +85	°C
Storage temperature range	T _{STG}		-65 to +150	°C
Output current	I _{OUT}		20	mA

Recommended Operating Conditions

 $V_{SS} = 0V$

Parameter	Symbol		Condition		Rating		Unit
Faranieler	Symbol		Condition		typ	max	Unit
		5026AL×	CL ≤ 30pF	2.25	-	3.6	V
		5026BL1	CL ≤ 30pF	2.25	-	3.6	V
Operating outputs voltage	V	5026MLA	$f \le 80MHz, CL \le 30pF$	2.25	-	3.6	V
Operating supply voltage	V _{DD}	5026MLB	$f \le 100MHz, CL \le 30pF$	2.25	-	3.6	V
		5026MLC	$f \le 100MHz, CL \le 30pF$	2.25	-	3.6	V
			$f \le 133MHz, CL \le 15pF$	2.25	-	3.6	V
Input voltage	V _{IN}			V _{SS}	-	V _{DD}	V
Operating temperature	T _{OPR}			-40	-	+85	°C
		5026AL×		20	-	50	MHz
		5026BL1*2	5026BL1 ^{*2}		-	100	MHz
Operating frequency ^{*1}	f _O	5026MLA	5026MLA		-	80	MHz
		5026MLB*2	5026MLB ^{*2}		-	100	MHz
		5026MLC ^{*2}	026MLC ^{*2}		-	133	MHz

*1. The operating frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillator frequency band is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated. *2. When 2.5V operation, the ratings of switching characteristics are difference by the frequency or output load. Refer to "Switching Characteristics".

Electrical Characteristics

5026AL× (2.5V operation)

 V_{DD} = 2.25 to 2.75V, V_{SS} = 0V, Ta = -40 to +85°C unless otherwise noted.

Parameter	Symbol	Condition		Rating			
Farameter	Symbol	Condition		min	typ	max	Unit
HIGH-level output voltage	V _{OH}	Q: Measurement cct 1, V _{DD} = 2.25V, I	_{DH} = 4mA	1.65	1.95	-	V
LOW-level output voltage	V _{OL}	Q: Measurement cct 2, V _{DD} = 2.25V, I	_{DL} = 4mA	-	0.3	0.4	V
HIGH-level input voltage	V _{IH}	INHN		0.7V _{DD}	-	-	V
LOW-level input voltage	V _{IL}	INHN		-	-	0.3V _{DD}	V
			V _{OH} = V _{DD}	-	-	10	μA
Output leakage current	Ιz	Q: Measurement cct 2, INHN = LOW	V _{OL} = V _{SS}	-	-	10	μA
			5026AL1	-	7	14	mA
			5026AL2	-	4.5	9	mA
		Measurement cct 3, load cct 1,	5026AL3	-	3.5	7	mA
Current consumption		INHN = open, $C_L = 30pF$, f = 50MHz	5026AL4	-	2.9	5.8	mA
			5026AL5	-	2.5	5.0	mA
			5026AL6	-	2.4	4.8	mA
Standby current	I _{ST}	Measurement cct 3, INHN = LOW	•	-	-	3	μA
	R _{UP1}	Management and 4		2	6	12	MΩ
INHN pull-up resistance	R _{UP2}	Measurement cct 4		20	100	200	kΩ
Feedback resistance	R _f	Measurement cct 5		50	-	150	kΩ
Oscillator amplifier output resistance	R _D	Design value. A monitor pattern on a wafer is tested.		340	400	460	Ω
	C _G		unders in the stard	6.8	8	9.2	pF
Built-in capacitance	CD	Design value. A monitor pattern on a v	vater is tested.	8.5	10	11.5	pF

5026AL× (3.0V operation)

 V_{DD} = 2.7 to 3.6V, V_{SS} = 0V, Ta = -40 to +85°C unless otherwise noted.

Parameter	Symbol	Condition		Rating		Unit		
Parameter	Symbol	Condition		min	typ	max	Unit	
HIGH-level output voltage	V _{OH}	Q: Measurement cct 1, V _{DD} = 2.7V, I _{OI}	_H = 4mA	2.3	2.4	-	V	
LOW-level output voltage	V _{OL}	Q: Measurement cct 2, V _{DD} = 2.7V, I _{OI}	_ = 4mA	-	0.3	0.4	V	
HIGH-level input voltage	V _{IH}	INHN		0.7V _{DD}	-	-	V	
LOW-level input voltage	V _{IL}	INHN		-	-	0.3V _{DD}	V	
			$V_{OH} = V_{DD}$	-	-	10	μA	
Output leakage current	ΙZ	Q: Measurement cct 2, INHN = LOW	V _{OL} = V _{SS}	-	-	10	μA	
			5026AL1	-	8.5	17	mA	
Current consumption			5026AL2	-	5.5	11	mA	
		Measurement cct 3, load cct 1, INHN = open, C _L = 30pF, f = 50MHz	5026AL3	_	4	8	mA	
	I _{DD2}		5026AL4	-	3.3	6.6	mA	
			5026AL5	_	2.9	5.8	mA	
			5026AL6	-	2.7	5.4	mA	
Standby current	I _{ST}	Measurement cct 3, INHN = LOW		-	-	5	μA	
	R _{UP1}	Management		2	4	8	MΩ	
INHN pull-up resistance	R _{UP2}	Measurement cct 4		15	75	150	kΩ	
Feedback resistance	R _f	Measurement cct 5		50	-	150	kΩ	
Oscillator amplifier output resistance	R _D	Design value. A monitor pattern on a wafer is tested.		340	400	460	Ω	
Duilt in consoltance	C _G		unfau in to stard	6.8	8	9.2	pF	
Built-in capacitance	CD	Design value. A monitor pattern on a v	Design value. A monitor pattern on a wafer is tested.		10	11.5	pF	

5026BL1 (2.5V operation)

Parameter	Symbol	Condition		Unit			
Farameter	Symbol	Condition		min	typ	max	Unit
HIGH-level output voltage	V _{OH}	Q: Measurement cct 1, V_{DD} = 2.25V, I ₀	_{DH} = 8mA	1.65	1.95	-	V
LOW-level output voltage	V _{OL}	Q: Measurement cct 2, V_{DD} = 2.25V, I ₀	_{DL} = 8mA	-	0.3	0.4	V
HIGH-level input voltage	V _{IH}	INHN		0.7V _{DD}	-	-	V
LOW-level input voltage	V _{IL}	INHN		_	-	0.3V _{DD}	V
			$V_{OH} = V_{DD}$		-	10	μA
Output leakage current	Ι _Ζ	Q: Measurement cct 2, INHN = LOW V _{OL} = V _{SS}		-	-	10	μA
Current consumption	I _{DD2}	Measurement cct 3, load cct 1, INHN = open, C _L = 30pF, f = 100MHz		-	14	28	mA
Standby current	I _{ST}	Measurement cct 3, INHN = LOW		_	-	3	μA
	R _{UP1}	Management and 4		2	6	12	MΩ
INHN pull-up resistance	R _{UP2}	Measurement cct 4		20	100	200	kΩ
Feedback resistance	R _f	Measurement cct 5		50	-	150	kΩ
Oscillator amplifier output resistance	R _D	Design value. A monitor pattern on a wafer is tested.		170	200	230	Ω
Duilt in consolitones	C _G	Design using A marity ration as a			8	9.2	pF
Built-in capacitance C _D		Design value. A monitor pattern on a v	8.5	10	11.5	pF	

 V_{DD} = 2.25 to 2.75V, V_{SS} = 0V, Ta = -40 to +85°C unless otherwise noted.

5026BL1 (3.0V operation)

 V_{DD} = 2.7 to 3.6V, V_{SS} = 0V, Ta = -40 to +85°C unless otherwise noted.

Devemeter	Cumhal	Condition			Rating		
Parameter	Symbol			min	typ	max	Unit
HIGH-level output voltage	V _{OH}	Q: Measurement cct 1, V _{DD} = 2.7V, I _O	_H = 8mA	2.3	2.4	-	V
LOW-level output voltage	V _{OL}	Q: Measurement cct 2, V _{DD} = 2.7V, I _O	_ = 8mA	-	0.3	0.4	V
HIGH-level input voltage	V _{IH}	INHN		0.7V _{DD}	-	-	V
LOW-level input voltage	V _{IL}	INHN		-	-	0.3V _{DD}	۷
		Q: Measurement cct 2, INHN = LOW	V _{OH} = V _{DD}		-	10	μA
Output leakage current	eakage current I _Z Q: Measure		V _{OL} = V _{SS}	-	-	10	μA
Current consumption	I _{DD2}	Measurement cct 3, load cct 1, INHN = open, C _L = 30pF, f = 100MHz		_	19	38	mA
Standby current	I _{ST}	Measurement cct 3, INHN = LOW		-	-	5	μA
	R _{UP1}	Management and 4		2	4	8	MΩ
INHN pull-up resistance	R _{UP2}	Measurement cct 4		15	75	150	kΩ
Feedback resistance	R _f	Measurement cct 5		50	-	150	kΩ
Oscillator amplifier output resistance	R _D	Design value. A monitor pattern on a wafer is tested.		170	200	230	Ω
Duilt in conseitence	C _G				8	9.2	pF
Built-in capacitance	uilt-in capacitance Design value. A monitor pattern on a wafer is tested.		8.5	10	11.5	pF	

5026ML× (2.5V operation)

$V_{DD} = 2.25$ to 2.75V, $V_{SS} = 0V$, $Ta = -40$ to +85°C unless o	otherwise noted.
--	------------------

Parameter	Symbol	Condition				Rating		Unit
Farameter	Symbol	Condition			min	typ	max	Unit
HIGH-level output voltage	V _{OH}	Q: Measurement cct 1, V _{DD} = 2.2	:5V, I _{OH} = 8mA		1.65	1.95	-	V
LOW-level output voltage	V _{OL}	Q: Measurement cct 2, V _{DD} = 2.2	5V, I _{OL} = 8mA		-	0.3	0.4	V
HIGH-level input voltage	V _{IH}	INHN			0.7V _{DD}	-	-	V
LOW-level input voltage	V _{IL}	INHN			-	-	0.3V _{DD}	V
		O: Maggurament act 0, INILIN	0.00	$V_{OH} = V_{DD}$	-	-	10	μA
Output leakage current	Ιz	Q: Measurement cct 2, INHN = L	OW	V _{OL} = V _{SS}	-	-	10	μA
	I _{DD1}	Measurement cct 3, load cct 1, INHN = open, C _L = 15pF	f = 133MHz	5026MLC	-	15	30	mA
Current consumption			f = 72MHz	5026MLA	-	11	22	mA
	I _{DD2}	Measurement cct 3, load cct 1, INHN = open, C_1 = 30pF	f = 100MHz	5026MLB	-	15	30	mA
			f = 100MHz	5026MLC	-	15	30	mA
Standby current	I _{ST}	Measurement cct 3, INHN = LOW			-	-	3	μA
	R _{UP1}	Management and 4	Measurement cct 4			6	12	MΩ
INHN pull-up resistance	R _{UP2}	Measurement cct 4				100	200	kΩ
				5026MLA	3.99	4.7	5.41	kΩ
AC feedback resistance	R _{f1}	Design value. A monitor pattern on a wafer is te	ested.	5026MLB	2.29	2.70	3.11	kΩ
		5026MLC			2.97	3.5	4.03	kΩ
DC feedback resistance	R _{f2}	Measurement cct 5			50	-	150	kΩ
Oscillator amplifier output resistance	R _D	Design value. A monitor pattern of	on a wafer is tes	sted.	85	100	115	Ω
AC feedback capacitance	C _f	Design value. A monitor pattern of	on a wafer is tes	sted.	8.5	10	11.5	pF
				5026MLA	1.70	2	2.30	pF
	C _G	Design value. A monitor pattern on a wafer is te	n a wafar is tastad		1.70	2	2.30	pF
Duilt in conseitonce				5026MLC	0.85	1	1.15	pF
Built-in capacitance				5026MLA	3.40	4	4.60	pF
	CD	Design value. A monitor pattern on a wafer is te	ested.	5026MLB	3.40	4	4.60	pF
			5026MLC		3.40	4	4.60	pF

5026ML× (3.0V operation)

$V_{DD} = 2.7$ to 3.6V, $V_{SS} = 0V$, $Ta = -40$ to +85°C unless other	herwise noted.
--	----------------

Parameter	Cumhal	Condit		Rating				
Parameter	Symbol	Condit	ion		min	typ	max	Unit
HIGH-level output voltage	V _{OH}	Q: Measurement cct 1, V_{DD} = 2.7V, I_{OH} = 8mA			2.3	2.4	-	V
LOW-level output voltage	V _{OL}	Q: Measurement cct 2, V _{DD} = 2.7	'V, I _{OL} = 8mA		-	0.3	0.4	V
HIGH-level input voltage	V _{IH}	INHN			0.7V _{DD}	-	-	V
LOW-level input voltage	V _{IL}	INHN			-	-	0.3V _{DD}	V
Output leakage current		O: Maggurgmant act 2, INIHN - L	0.00	$V_{OH} = V_{DD}$	-	-	10	μA
Output leakage current	ΙZ	Q: Measurement cct 2, INHN = L	000	V _{OL} = V _{SS}	-	-	10	μA
	I _{DD1}	Measurement cct 3, load cct 1, INHN = open, C _L = 15pF	f = 133MHz	5026MLC	-	20	40	mA
Current consumption			f = 72MHz	5026MLA	-	15	30	mA
	I _{DD2}	Measurement cct 3, load cct 1, INHN = open, C _L = 30pF	f = 100MHz	5026MLB	-	20	40	mA
			f = 100MHz	5026MLC	-	20	40	mA
Standby current	I _{ST}	Measurement cct 3, INHN = LOW			-	-	5	μA
R _{UP1}		Manual and A			2	4	8	MΩ
INHN pull-up resistance	R _{UP2}	Measurement cct 4			15	75	150	kΩ
	R _{f1}	Design value. 5026MLA A monitor pattern on a wafer is tested. 5026MLB 5026MLC 5026MLC		3.99	4.7	5.41	kΩ	
AC feedback resistance				2.29	2.70	3.11	kΩ	
				2.97	3.5	4.03	kΩ	
DC feedback resistance	R _{f2}	Measurement cct 5			50	-	150	kΩ
Oscillator amplifier output resistance	R _D	Design value. A monitor pattern o	on a wafer is tes	sted.	85	100	115	Ω
AC feedback capacitance	C _f	Design value. A monitor pattern o	on a wafer is tes	sted.	8.5	10	11.5	pF
				5026MLA	1.70	2	2.30	pF
	C _G	Design value. A monitor pattern on a wafer is te	ested.	5026MLB	1.70	2	2.30	pF
D 10 1				5026MLC	0.85	1	1.15	pF
Built-in capacitance			5026		3.40	4	4.60	pF
	CD	Design value. A monitor pattern on a wafer is te	ested.	5026MLB	3.40	4	4.60	pF
				5026MLC	3.40	4	4.60	pF

Switching Characteristics

5026AL× (2.5V operation)

 $V_{DD} = 2.25$ to 2.75V, $V_{SS} = 0$ V, Ta = -40 to +85°C unless otherwise noted.

Parameter	Symbol	Condition		Unit			
Farameter	Symbol	Condition	min	typ	max	Onit	
Output rico timo	t _{r1}		C _L = 15pF	-	3	6	ns
Output rise time	t _{r2}		C _L = 30pF	-	5	10	ns
Output fall time	t _{f1}	Measurement cct 3, load cct 1,	C _L = 15pF	-	3	6	ns
	t _{f2}	0.9V _{DD} to 0.1V _{DD}	C _L = 30pF	-	5	10	ns
Output duty cycle ^{*1}	Duty1	Measurement cct 3, load cct 1,	C _L = 15pF	45	-	55	%
	Duty2	V _{DD} = 2.5V, Ta = 25°C, f = 50MHz	C _L = 30pF	45	-	55	%
Output disable delay time ^{*2}	t _{PLZ}	Measurement cct 6, load cct 1, V _{DD} = 2.5V, Ta = 25°C,		-	-	100	ns
Output enable delay time*2	t _{PZL}	C _L = 15pF		-	-	100	ns

*1. The duty cycle characteristic is checked the sample chips of each production lot.

*2. Oscillator stop function is built-in. When INHN goes LOW, normal output stops. When INHN goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

5026AL× (3.0V operation)

 $V_{DD} = 2.7$ to 3.6V, $V_{SS} = 0V$, Ta = -40 to +85°C unless otherwise noted.

Parameter	Symbol	Condition		Unit				
Farameter	Symbol	Condition			typ	max	onit	
Output rise time	t _{r1}	Measurement cct 3, load cct 1, 0.1V _{DD} to 0.9V _{DD}	C _L = 15pF	-	2.5	5	ns	
	t _{r2}		C _L = 30pF	-	4.5	9	ns	
Output fall time	t _{f1}	Measurement cct 3, load cct 1, 0.9V _{DD} to 0.1V _{DD}	C _L = 15pF	-	2.5	5	ns	
	t _{f2}		C _L = 30pF	-	4.5	9	ns	
	Duty1	Measurement cct 3, load cct 1,	C _L = 15pF	45	-	55	%	
Output duty cycle ^{*1}	Duty2	V _{DD} = 3.0V, Ta = 25°C, f = 50MHz	C _L = 30pF	45	-	55	%	
Output disable delay time ^{*2}	t _{PLZ}	Measurement cct 6, load cct 1, $V_{DD} = 3.0V$, Ta = 25°C,		-	-	100	ns	
Output enable delay time ^{*2}	t _{PZL}	C _L = 15pF		-	-	100	ns	

*1. The duty cycle characteristic is checked the sample chips of each production lot.

*2. Oscillator stop function is built-in. When INHN goes LOW, normal output stops. When INHN goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

5026BL1 (2.5V operation)

Devenueter	Cumhal	Operativity					
Parameter	Symbol	Condition		min	typ	max	Unit
	t _{r1}	Measurement cct 3, load cct 1,	C _L = 15pF	-	2	4	ns
Output rise time	t _{r2}	0.1V _{DD} to 0.9V _{DD}	$C_L = 30 pF$	-	3	6	ns
	t _{r3}	Measurement cct 3, load cct 1, $0.2V_{DD}$ to $0.8V_{DD}$	C _L = 30pF	-	2.5	5	ns
Output fall time	t _{f1}	Measurement cct 3, load cct 1, 0.9V _{DD} to 0.1V _{DD}	C _L = 15pF	-	2	4	ns
	t _{f2}		$C_L = 30 pF$	-	3	6	ns
	t _{f3}	Measurement cct 3, load cct 1, 0.8V _{DD} to 0.2V _{DD}	C _L = 30pF	-	2.5	5	ns
	Duty1		C _L = 15pF f = 100MHz	45	-	55	%
Output duty cycle ^{*1}	Duty2	Measurement cct 3, load cct 1, $V_{DD} = 2.5V$, Ta = 25°C	C _L = 30pF f = 80MHz	45	-	55	%
	Duty3		C _L = 30pF f = 100MHz	40	-	60	%
Output disable delay time ^{*2}	t _{PLZ}	Measurement cct 6, load cct 1, V _{DD}	= 2.5V, Ta = 25°C,	-	-	100	ns
Output enable delay time ^{*2}	t _{PZL}	C _L = 15pF	-	-	100	ns	

 $V_{DD} = 2.25$ to 2.75V, $V_{SS} = 0V$, Ta = -40 to +85°C unless otherwise noted.

*1. The duty cycle characteristic is checked the sample chips of each production lot.

*2. Oscillator stop function is built-in. When INHN goes LOW, normal output stops. When INHN goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

5026BL1 (3.0V operation)

 $V_{DD} = 2.7$ to 3.6V, $V_{SS} = 0V$, Ta = -40 to +85°C unless otherwise noted.

Parameter	Symbol	Condition		Rating			
Farameter	Symbol	Condition	min	typ	max	Unit	
Output rice time	t _{r1}		C _L = 15pF	-	1.5	3	ns
Output rise time	t _{r2}		C _L = 30pF	-	2.5	5	ns
Output fall time	t _{f1}	Measurement cct 3, load cct 1, 0.9V _{DD} to 0.1V _{DD}	C _L = 15pF	-	1.5	3	ns
	t _{f2}		C _L = 30pF	-	2.5	5	ns
	Duty1	Measurement cct 3, load cct 1,	C _L = 15pF	45	-	55	%
Output duty cycle ^{*1}	Duty2	V _{DD} = 3.0V, Ta = 25°C, f = 100MHz	C _L = 30pF	45	-	55	%
Output disable delay time ^{*2}	t _{PLZ}	Measurement cct 6, load cct 1, $V_{DD} = 3.0V$, Ta = 25°		-	-	100	ns
Output enable delay time*2	t _{PZL}	C _L = 15pF		-	-	100	ns

*1. The duty cycle characteristic is checked the sample chips of each production lot.

*2. Oscillator stop function is built-in. When INHN goes LOW, normal output stops. When INHN goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

5026ML× (2.5V operation)

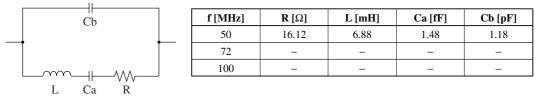
Devementer	Cumhal	Condit	Rating			11		
Parameter	Symbol	Condit	min	typ	max	Unit		
Output rice time	t _{r1}	Measurement cct 3, load cct 1,		C _L = 15pF	-	2	4	ns
Output rise time	t _{r2}	0.1V _{DD} to 0.9V _{DD}		C _L = 30pF	-	3	6	ns
Output fall time	t _{f1}	Measurement cct 3, load cct 1,		C _L = 15pF	_	2	4	ns
Output fall time	t _{f2}	0.9V _{DD} to 0.1V _{DD}		C _L = 30pF	-	3	6	ns
	Duty1 V	Measurement cct 3, load cct 1, V_{DD} = 2.5V, Ta = 25°C, C_L = 15pF	f = 72MHz	5026MLA	45	-	55	%
			f = 100MHz	5026MLB	45	-	55	%
			f = 133MHz	5026MLC	45	-	55	%
Output duty cycle ^{*1}		Measurement cct 3, load cct 1, $V_{DD} = 2.5V$, Ta = 25°C,	f = 72MHz	5026MLA	45	-	55	%
	Duty2 V _{DI}		f = 100MHz	5026MLB	40	-	60	%
		C _L = 30pF	f = 100MHz	5026MLC	40	-	60	%
Output disable delay time ^{*2}	t _{PLZ}	Measurement cct 6, load cct 1, $V_{DD} = 2.5V$, Ta = 25°C,			_	-	100	ns
Output enable delay time ^{*2}	t _{PZL}	C _L = 15pF		_	-	100	ns	

 $V_{DD} = 2.25$ to 2.75V, $V_{SS} = 0V$, Ta = -40 to +85°C unless otherwise noted.

*1. The duty cycle characteristic is checked the sample chips of each production lot.

*2. Oscillator stop function is built-in. When INHN goes LOW, normal output stops. When INHN goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

5026ML× (3.0V operation)


 $V_{DD} = 2.7$ to 3.6V, $V_{SS} = 0V$, Ta = -40 to +85°C unless otherwise noted.

Devemeter	Symbol	Conditi	Rating			Unit		
Parameter					min	typ	max	Unit
Output rise time	t _{r1}	Measurement cct 3, load cct 1,		C _L = 15pF	-	1.5	3	ns
	t _{r2}	0.1V _{DD} to 0.9V _{DD}		C _L = 30pF	-	2.5	5	ns
Output fall time	t _{f1}	Measurement cct 3, load cct 1,		C _L = 15pF	-	1.5	3	ns
Output fall time	t _{f2}	0.9V _{DD} to 0.1V _{DD}		C _L = 30pF	-	2.5	5	ns
	Duty1	Measurement cct 3, load cct 1, V_{DD} = 3.0V, Ta = 25°C, C_L = 15pF	f = 72MHz	5026MLA	45	-	55	%
			f = 100MHz	5026MLB	45	-	55	%
			f = 133MHz	5026MLC	45	-	55	%
Output duty cycle ^{*1}		Measurement cct 3, load cct 1, f = 7	f = 72MHz	5026MLA	45	-	55	%
	Duty2	$V_{DD} = 3.0V$, Ta = 25°C, C _L = 30pF	f = 100MHz	5026MLB	45	-	55	%
		Measurement cct 3, load cct 1, V Ta = 25°C, C _L = 30pF, f = 100MH			45	-	55	%
Output disable delay time ^{*2}	t _{PLZ}	Measurement cct 6, load cct 1, V_{DD} = 3.0V, Ta = 25°C,			_	-	100	ns
Output enable delay time ^{*2}	t _{PZL}	C _L = 15pF			-	-	100	ns

*1. The duty cycle characteristic is checked the sample chips of each production lot.

*2. Oscillator stop function is built-in. When INHN goes LOW, normal output stops. When INHN goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

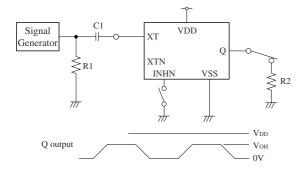
Current consumption and Output waveform with NPC's standard crystal

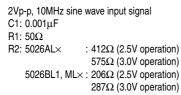
Note. The 72MHz and 100MHz crystal parameters are confidential.

FUNCTIONAL DESCRIPTION

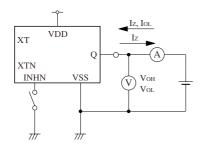
Standby Function

When INHN goes LOW, the oscillator stops and the oscillator output on Q becomes high impedance.

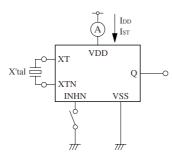

Version	INHN	Q	Oscillator
5026AL×	HIGH (or open)	Any f_O, f_O/2, f_O/4, f_O/8, f_O/16 or f_O/32 output frequency	Normal operation
5026BL1, ML×	fildir (or open)	f _O	Normal operation
5026AL×, BL1, ML×	6AL×, BL1, ML× LOW High impedance		Stopped

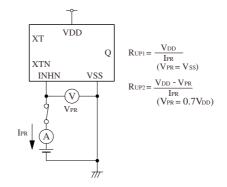

Power-saving Pull-up Resistor

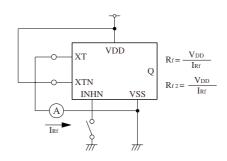
The INHN pull-up resistance changes in response to the input level (HIGH or LOW). When INHN goes LOW (standby state), the pull-up resistance becomes large to reduce the current consumption during standby.

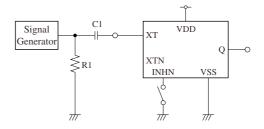

MEASUREMENT CIRCUITS

Measurement cct 1

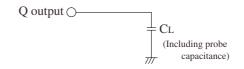



Measurement cct 2

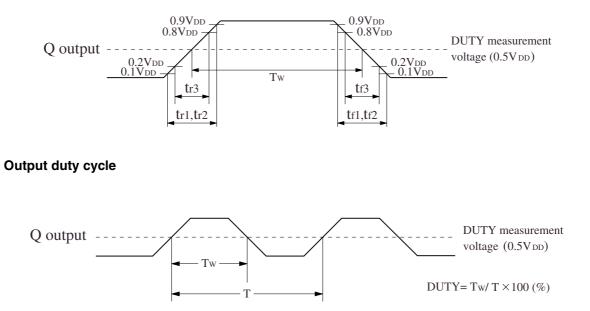

Measurement cct 3


Measurement cct 4

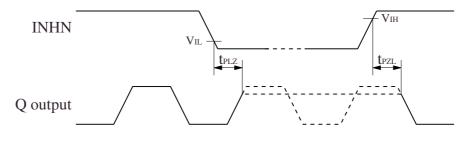
Measurement cct 5



Measurement cct 6


2Vp-p, 10MHz sine wave input signal C1: $0.001 \mu F$ R1: 50Ω

Load cct 1


Switching Time Measurement Waveform

Output duty level, t_r, t_f

Output Enable/Disable Delay

when the device is in standby, the oscillator stops. When standby is released, the oscillator starts and stable oscillator output occurs after a short delay.

INHN input waveform $tr = tf \le 10ns$

5026 series

Please pay your attention to the following points at time of using the products shown in this document.

NPC

The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from SEIKO NPC CORPORATION (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

1-9-9, Hatchobori, Chuo-ku, Tokyo 104-0032, Japan Telephone: +81-3-5541-6501 Facsimile: +81-3-5541-6510 http://www.npc.co.jp/ Email: sales@npc.co.jp

NC0413CE 2008.12