

High-frequency Crystal Oscillator Module ICs

OVERVIEW

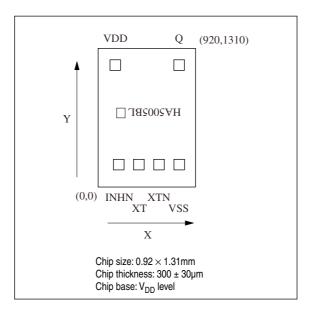
The CF5005B series are high-frequency crystal oscillator module ICs. They are comprised of an oscillator circuit and output buffer optimized for operation at 125 to 165MHz. The crystal oscillator circuit has a built-in thin-film feedback resistor with good temperature characteristics and built-in capacitors with excellent frequency response, making possible a stable 3rd overtone oscillator with only the addition of a crystal element.

FEATURES

- 3.0 to 3.6V operating supply voltage range
- 125 to 165MHz recommended operating frequency range
- Inverter amplifier feedback resistor built-in
- Oscillator capacitors C_G, C_D built-in
- Output three-state function (high impedance in standby mode, oscillator stops)
- f_O output frequency (oscillator frequency)
- 8mA output drive capability $(V_{DD} = 3.0V)$
- CMOS output duty level
- Chip form (CF5005B××)

SERIES CONFIGURATION

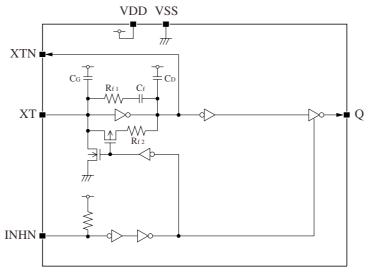
Vanatara	Recommended		Built-in capa	5 # 61	
Version	operating frequency range ¹ [MHz]	gm ratio	C _G	C _D	R _f [kΩ]
CF5005BLA	125 to 150	1.0	1	6	2.2
CF5005BLB	140 to 165	1.0	1	3	2.2


^{1.} The recommended operating frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillator frequency band is not guaranteed. Specifically, when used at high frequencies, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

ORDERING INFORMATION

Device	Package
CF5005B××-1	Chip form

PAD LAYOUT


(Unit: μm)

PIN DESCRIPTION and PAD DIMENSIONS

Name 1/0		Decariation			Pad dimensions [µm]		
Name	1/0		Description		Υ		
INHN	I	Output state control i	nput. Oscillator stops when LOW. Pull-up resistor built in	195	212		
XT	I	Amplifier input.	Crystal oscillator connection pins.	385	212		
XTN	0	Amplifier output.	Crystal oscillator connected between XT and XTN	575	212		
VSS	-	Ground		766	212		
Q	0	Output. Output frequency (f _O). High impedance in standby mode		765	1152		
VDD	-	Supply voltage		162	1152		

BLOCK DIAGRAM

Substrate potential: V_{DD}

SPECIFICATIONS

Absolute Maximum Ratings

 $V_{SS} = 0V$

Parameter	Symbol	Condition	Rating	Unit
Supply voltage range	V _{DD}		-0.5 to 7.0	٧
Input voltage range	V _{IN}		-0.5 to V _{DD} + 0.5	
Output voltage range	V _{OUT}		-0.5 to V _{DD} + 0.5	٧
Operating temperature range	T _{opr}		-40 to 85	°C
Storage temperature range	T _{stg}		-65 to 150	°C
Output current	I _{OUT}		25	mA

Recommended Operating Conditions

 V_{SS} = 0V, f \leq 165MHz, $C_L \leq$ 15pF unless otherwise noted.

Parameter	Symbol	Condition	Rating			Unit
raidiliciei			min	typ	max	Oille
Operating supply voltage	V _{DD}		3.0	-	3.6	V
Input voltage	V _{IN}		V _{SS}	-	V _{DD}	V
Operating temperature	T _{OPR}		-20	-	80	°C

Electrical Characteristics

 V_{DD} = 3.0 to 3.6V, V_{SS} = 0V, Ta = -20 to 80°C unless otherwise noted.

Dawanatan	Combal	Condition		Rating			11
Parameter	Symbol			min	typ	max	Unit
HIGH-level output voltage	V _{OH}	Q: Measurement cct 1, V _{DD} = 3.0V, I _{OH}	_I = 8mA	2.5	2.7	-	٧
LOW-level output voltage	V _{OL}	Q: Measurement cct 2, V _{DD} = 3.0V, I _{OL}	= 8mA	-	0.3	0.4	٧
Outrot leeleese surrent		Q: Measurement cct 2, INHN = LOW,	$V_{OH} = V_{DD}$	-	-	10	μА
Output leakage current	l _Z	V _{DD} = 3.6V	V _{OL} = V _{SS}	_	-	10	
HIGH-level input voltage	V _{IH}	INHN	1	0.7V _{DD}	-	-	٧
LOW-level input voltage	V _{IL}	INHN		-	-	0.3V _{DD}	٧
O	I _{DD}	Measurement cct 3, load cct 1,	f = 133MHz	-	30	65	- mA
Current consumption			f = 156MHz	_	35	80	
Standby current	I _{ST}	Measurement cct 3, INHN = LOW		_	-	10	μA
	R _{UP1}	Measurement cct 4	INHN = V _{SS}	0.4	-	4	МΩ
INHN pull-up resistance	R _{UP2}		INHN = 0.7V _{DD}	50	-	150	kΩ
AC feedback resistance	R _{f1}	Design value. A monitor pattern on a w	afer is tested.	1.76	2.2	2.64	kΩ
DC feedback resistance	R _{f2}	Measurement cct 5	Measurement cct 5		-	150	kΩ
AC feedback capacitance	C _f	Design value. A monitor pattern on a wafer is tested.		9.3	10	10.7	pF
Built-in capacitance		Design value. A monitor pattern on a	CF5005BLA	0.93	1	1.07	_
	C _G	wafer is tested.	CF5005BLB	0.93	1	1.07	pF
	C _D Design value. A monitor pattern on a wafer is tested.	CF5005BLA	5.58	6	6.42	pF	
		CF5005BLB	2.79	3	3.21		

Switching Characteristics

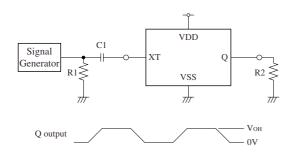
 V_{DD} = 3.0 to 3.6V, V_{SS} = 0V, Ta = -20 to 80 °C unless otherwise noted.

Parameter	Symbol	Condition		Rating		
Faiailietei	Parameter Symbol Condition		min	typ	max	Unit
Output rise time	t _r	Measurement cct 3, load cct 1, 0.1V _{DD} to 0.9V _{DD} , C _L = 15pF	-	1.5	2.5	ns
Output fall time	t _f	Measurement cct 3, load cct 1, 0.9V _{DD} to 0.1V _{DD} , C _L = 15pF	-	1.5	2.5	ns
Output duty cycle ¹	Duty	Measurement cct 3, load cct 1, Ta = 25°C, V_{DD} = 3.3V, C_L = 15pF, f \leq 165MHz	40	-	60	%
Output disable delay time ²	t _{PLZ}	Measurement cct 6, load cct 1, Ta = 25°C, V_{DD} = 3.0V, $C_L \le$ 15pF	-	-	100	ns
Output enable delay time ²	t _{PZL}	Measurement cct 6, load cct 1, Ta = 25°C, V_{DD} = 3.0V, $C_L \le$ 15pF	-	-	100	ns

^{1.} The duty cycle characteristic is checked the sample chips of each production lot.

FUNCTIONAL DESCRIPTION

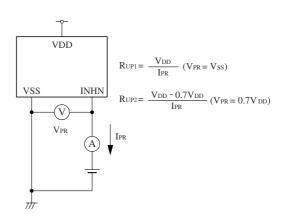
Standby Function

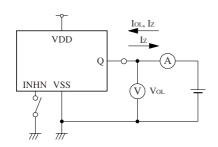

The oscillator stops when INHN goes LOW. When the oscillator stops, the oscillator output on Q goes high impedance.

INHN	Q	Oscillator
HIGH (or open)	f _O output frequency	Normal operation
LOW	High impedance	Stopped

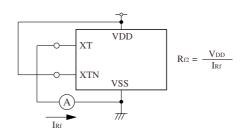
^{2.} Oscillator stop function is built-in. When INHN goes LOW, normal output stops. When INHN goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

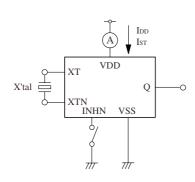
MEASUREMENT CIRCUITS

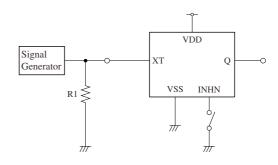

Measurement cct 1


 $2.5 V_{P-P}$, 10MHz sine wave input signal C1 : $0.001 \mu F$

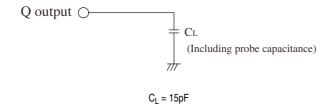
C1 : $0.001\mu F$ R1 : 50Ω R2 : 312.5Ω


Measurement cct 4

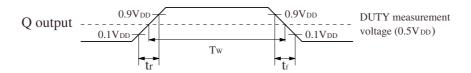

Measurement cct 2


Measurement cct 5

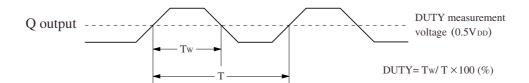
Measurement cct 3



Measurement cct 6

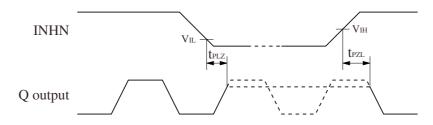

R1:50 Ω

Load cct 1



Switching Time Measurement Waveform

t_r , t_f , DUTY



Output duty cycle

Output Enable/Disable Delay

The following figure shows the oscillator timing during normal operation. Note that when the device is in standby, the oscillator stops. When standby is released, the oscillator starts and stable oscillator output occurs after a short delay.

INHN input waveform $tr = tf \le 10ns$

Please pay your attention to the following points at time of using the products shown in this document.

The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from SEIKO NPC CORPORATION (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

15-6, Nihombashi-kabutocho, Chuo-ku, Tokyo 103-0026, Japan Telephone: +81-3-6667-6601 Facsimile: +81-3-6667-6611 http://www.npc.co.jp/ Email: sales@npc.co.jp

NC0109BE 2006.04